RESUMO
The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.
Assuntos
Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Quimiocinas/metabolismo , Imunoterapia/métodos , Microambiente TumoralRESUMO
The immune system can eliminate tumors, but checkpoints enable immune escape. Here, we identify immune evasion mechanisms using genome-scale in vivo CRISPR screens across cancer models treated with immune checkpoint blockade (ICB). We identify immune evasion genes and important immune inhibitory checkpoints conserved across cancers, including the non-classical major histocompatibility complex class I (MHC class I) molecule Qa-1b/HLA-E. Surprisingly, loss of tumor interferon-γ (IFNγ) signaling sensitizes many models to immunity. The immune inhibitory effects of tumor IFN sensing are mediated through two mechanisms. First, tumor upregulation of classical MHC class I inhibits natural killer cells. Second, IFN-induced expression of Qa-1b inhibits CD8+ T cells via the NKG2A/CD94 receptor, which is induced by ICB. Finally, we show that strong IFN signatures are associated with poor response to ICB in individuals with renal cell carcinoma or melanoma. This study reveals that IFN-mediated upregulation of classical and non-classical MHC class I inhibitory checkpoints can facilitate immune escape.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Evasão da Resposta Imune , Interferon gama/genética , Interferon gama/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NKRESUMO
Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Transcriptoma , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Apirase/antagonistas & inibidores , Apirase/imunologia , Linhagem Celular Tumoral , Humanos , Antígenos Comuns de Leucócito/antagonistas & inibidores , Antígenos Comuns de Leucócito/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 1 de Transcrição de Linfócitos T/metabolismoRESUMO
Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.
Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Sequenciamento Completo do Genoma , Idoso , Anilidas/uso terapêutico , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Elementos Facilitadores Genéticos/genética , Duplicação Gênica , Rearranjo Gênico , Genes myc , Loci Gênicos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Fenótipo , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêuticoRESUMO
Stroke is a multiphasic process in which initial cerebral ischemia is followed by secondary injury from immune responses to ischemic brain components. Here we demonstrate that peripheral CD11b+CD45+ myeloid cells magnify stroke injury via activation of triggering receptor expressed on myeloid cells 1 (TREM1), an amplifier of proinflammatory innate immune responses. TREM1 was induced within hours after stroke peripherally in CD11b+CD45+ cells trafficking to ischemic brain. TREM1 inhibition genetically or pharmacologically improved outcome via protective antioxidant and anti-inflammatory mechanisms. Positron electron tomography imaging using radiolabeled antibody recognizing TREM1 revealed elevated TREM1 expression in spleen and, unexpectedly, in intestine. In the lamina propria, noradrenergic-dependent increases in gut permeability induced TREM1 on inflammatory Ly6C+MHCII+ macrophages, further increasing epithelial permeability and facilitating bacterial translocation across the gut barrier. Thus, following stroke, peripheral TREM1 induction amplifies proinflammatory responses to both brain-derived and intestinal-derived immunogenic components. Critically, targeting this specific innate immune pathway reduces cerebral injury.
Assuntos
Encéfalo/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Acidente Vascular Cerebral/patologia , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Encéfalo/citologia , Linhagem Celular , Imunidade Inata/imunologia , Inflamação/patologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7RESUMO
RNA-binding proteins (RBPs) control RNA metabolism to orchestrate gene expression and, when dysfunctional, underlie human diseases. Proteome-wide discovery efforts predict thousands of RBP candidates, many of which lack canonical RNA-binding domains (RBDs). Here, we present a hybrid ensemble RBP classifier (HydRA), which leverages information from both intermolecular protein interactions and internal protein sequence patterns to predict RNA-binding capacity with unparalleled specificity and sensitivity using support vector machines (SVMs), convolutional neural networks (CNNs), and Transformer-based protein language models. Occlusion mapping by HydRA robustly detects known RBDs and predicts hundreds of uncharacterized RNA-binding associated domains. Enhanced CLIP (eCLIP) for HydRA-predicted RBP candidates reveals transcriptome-wide RNA targets and confirms RNA-binding activity for HydRA-predicted RNA-binding associated domains. HydRA accelerates construction of a comprehensive RBP catalog and expands the diversity of RNA-binding associated domains.
Assuntos
Aprendizado Profundo , Hydra , Animais , Humanos , RNA/metabolismo , Ligação Proteica , Sítios de Ligação/genética , Hydra/genética , Hydra/metabolismoRESUMO
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adenoma/microbiologia , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Genoma Bacteriano/genética , Boca/microbiologia , FemininoRESUMO
Novel functional materials enable fundamental breakthroughs across technological applications from clean energy to information processing1-11. From microchips to batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by expensive trial-and-error approaches. Concurrently, deep-learning models for language, vision and biology have showcased emergent predictive capabilities with increasing data and computation12-14. Here we show that graph networks trained at scale can reach unprecedented levels of generalization, improving the efficiency of materials discovery by an order of magnitude. Building on 48,000 stable crystals identified in continuing studies15-17, improved efficiency enables the discovery of 2.2 million structures below the current convex hull, many of which escaped previous human chemical intuition. Our work represents an order-of-magnitude expansion in stable materials known to humanity. Stable discoveries that are on the final convex hull will be made available to screen for technological applications, as we demonstrate for layered materials and solid-electrolyte candidates. Of the stable structures, 736 have already been independently experimentally realized. The scale and diversity of hundreds of millions of first-principles calculations also unlock modelling capabilities for downstream applications, leading in particular to highly accurate and robust learned interatomic potentials that can be used in condensed-phase molecular-dynamics simulations and high-fidelity zero-shot prediction of ionic conductivity.
RESUMO
Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.
Assuntos
Sinalização do Cálcio , Cálcio , Calmodulina , Neurônios , Óxido Nítrico Sintase Tipo III , Fragmentos de Peptídeos , Cálcio/análise , Cálcio/metabolismo , Calmodulina/metabolismo , Neurônios/metabolismo , Cinética , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fatores de Tempo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismoRESUMO
Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.
Assuntos
Células de Purkinje , Transcriptoma , Animais , Cerebelo , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/fisiologia , Células de Purkinje/metabolismo , Transcriptoma/genéticaRESUMO
The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immunosuppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion-adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Colorretais , Interações entre Hospedeiro e Microrganismos , Microbiota , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Microbiota/genética , Microbiota/imunologia , Microbiota/fisiologia , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Células Mieloides/imunologia , Microambiente Tumoral , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Análise de Sequência de RNA , Perfilação da Expressão Gênica , Antígeno Ki-67/metabolismo , Progressão da DoençaRESUMO
Within the tumour microenvironment, CD4+ T cells can promote or suppress antitumour responses through the recognition of antigens presented by human leukocyte antigen (HLA) class II molecules1,2, but how cancers co-opt these physiologic processes to achieve immune evasion remains incompletely understood. Here we performed in-depth analysis of the phenotype and tumour specificity of CD4+ T cells infiltrating human melanoma specimens, finding that exhausted cytotoxic CD4+ T cells could be directly induced by melanoma cells through recognition of HLA class II-restricted neoantigens, and also HLA class I-restricted tumour-associated antigens. CD4+ T regulatory (TReg) cells could be indirectly elicited through presentation of tumour antigens via antigen-presenting cells. Notably, numerous tumour-reactive CD4+ TReg clones were stimulated directly by HLA class II-positive melanoma and demonstrated specificity for melanoma neoantigens. This phenomenon was observed in the presence of an extremely high tumour neoantigen load, which we confirmed to be associated with HLA class II positivity through the analysis of 116 melanoma specimens. Our data reveal the landscape of infiltrating CD4+ T cells in melanoma and point to the presentation of HLA class II-restricted neoantigens and direct engagement of immunosuppressive CD4+ TReg cells as a mechanism of immune evasion that is favoured in HLA class II-positive melanoma.
Assuntos
Antígenos de Neoplasias , Linfócitos T CD4-Positivos , Melanoma , Neoplasias Cutâneas , Células Apresentadoras de Antígenos , Antígenos de Neoplasias/imunologia , Antígenos HLA , Humanos , Melanoma/imunologia , Fenótipo , Neoplasias Cutâneas/imunologia , Células Tumorais Cultivadas , Microambiente TumoralRESUMO
Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.
Assuntos
Cinesinas , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Acetilação , Microtúbulos/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
Reduction of amyloid beta (Aß) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aß is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aß in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aß production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aß production could be a promising therapeutic strategy for treating AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios , Oligodendroglia , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Introdução de Genes , Neurônios/metabolismo , Oligodendroglia/metabolismoRESUMO
Direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. However, even incremental steps toward designing functional materials have proven challenging. If the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. On the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. Here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). We showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. By directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.
RESUMO
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Assuntos
Deriva Genética , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/virologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H1N1/genética , Variação Genética , Evolução Molecular , Seleção Genética , FilogeniaRESUMO
Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Suscetibilidade a Doenças , Diabetes Mellitus Tipo 2/genética , Evolução Biológica , GenômicaRESUMO
Species that propagate by sexual reproduction actively guard against the fertilization of an egg by multiple sperm (polyspermy). Flowering plants rely on pollen tubes to transport their immotile sperm to fertilize the female gametophytes inside ovules. In Arabidopsis, pollen tubes are guided by cysteine-rich chemoattractants to target the female gametophyte1,2. The FERONIA receptor kinase has a dual role in ensuring sperm delivery and blocking polyspermy3. It has previously been reported that FERONIA generates a female gametophyte environment that is required for sperm release4. Here we show that FERONIA controls several functionally linked conditions to prevent the penetration of female gametophytes by multiple pollen tubes in Arabidopsis. We demonstrate that FERONIA is crucial for maintaining de-esterified pectin at the filiform apparatus, a region of the cell wall at the entrance to the female gametophyte. Pollen tube arrival at the ovule triggers the accumulation of nitric oxide at the filiform apparatus in a process that is dependent on FERONIA and mediated by de-esterified pectin. Nitric oxide nitrosates both precursor and mature forms of the chemoattractant LURE11, respectively blocking its secretion and interaction with its receptor, to suppress pollen tube attraction. Our results elucidate a mechanism controlled by FERONIA in which the arrival of the first pollen tube alters ovular conditions to disengage pollen tube attraction and prevent the approach and penetration of the female gametophyte by late-arriving pollen tubes, thus averting polyspermy.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Fertilização , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Óxido Nítrico/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/metabolismo , Fosfotransferases/metabolismo , Tubo Polínico/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Óvulo Vegetal/citologia , Pectinas/química , Tubo Polínico/citologiaRESUMO
Identifying gene sets that are associated to disease can provide valuable biological knowledge, but a fundamental challenge of gene set analyses of GWAS data is linking disease-associated SNPs to genes. Transcriptome-wide association studies (TWASs) detect associations between the genetically predicted expression of a gene and disease risk, thus implicating candidate disease genes. However, causal disease genes at TWAS-associated loci generally remain unknown due to gene co-regulation, which leads to correlations across genes in predicted expression. We developed a method, gene co-regulation score (GCSC) regression, to identify gene sets that are enriched for disease heritability explained by predicted expression. GCSC regresses TWAS chi-square statistics on gene co-regulation scores reflecting correlations in predicted gene expression; a gene set is enriched for heritability if genes with high co-regulation to the set have higher TWAS chi-square statistics than genes with low co-regulation to the set, beyond what is expected based on co-regulation to all genes. We verified via simulations that GCSC is well calibrated and well powered. We applied GCSC to gene expression data from GTEx (48 tissues) and GWAS summary statistics for 43 independent diseases and complex traits analyzing a broad set of biological pathways and specifically expressed gene sets. We identified many enriched sets, recapitulating known biology. For Alzheimer disease, we detected evidence of an immune basis, and specifically a role for antigen presentation, in analyses of both biological pathways and specifically expressed gene sets. Our results highlight the advantages of leveraging gene co-regulation within the TWAS framework to identify enriched gene sets.