Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37763735

RESUMO

Background and Objectives: Chronic critical illness (CCI) is a syndrome characterized by persistent organ dysfunction that requires critical care therapy for ≥14 days. Sepsis and respiratory failure constitute the two primary causes of CCI. A better understanding of this patient population and their clinical course may help to risk-stratify them early during hospitalization. Our objective was to identify whether the source of sepsis (medical versus surgical) affected clinical trajectory and prognosis in patients developing CCI. Materials and Methods: We describe a cohort of patients having acute respiratory failure and sepsis and requiring critical care therapy in the medical (MICU) or surgical (SICU) critical care units for ≥14 days. Given the relative infrequency of CCI, we use a case series design to examine mortality, functional status, and place of residence (home versus non-home) at one year following their index hospitalization. Results: In medical patients developing CCI (n = 31), the severity of initial organ dysfunction, by SOFA score, was significantly associated with the development of CCI (p = 0.002). Surgical patients with CCI (n = 7) experienced significantly more ventilator-free days within the first 30 days following sepsis onset (p = 0.004), as well as less organ dysfunction at day 14 post-sepsis (p < 0.0001). However, one-year mortality, one-year functional status, and residency at home were not statistically different between cohorts. Moreover, 57% of surgical patients and 26% of medical patients who developed CCI were living at home for one year following their index hospitalization (p = 0.11). Conclusions: While surgical patients who develop sepsis-related CCI experience more favorable 30-day outcomes as compared with medical patients, long-term outcomes do not differ significantly between groups. This suggests that reversing established organ dysfunction and functional disability, regardless of etiology, is more challenging compared to preventing these complications at an earlier stage.


Assuntos
Estado Terminal , Sepse , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Prognóstico , Pacientes , Sepse/complicações
2.
Crit Care Explor ; 6(7): e1106, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916619

RESUMO

OBJECTIVES: While cytokine response patterns are pivotal in mediating immune responses, they are also often dysregulated in sepsis and critical illness. We hypothesized that these immunological deficits, quantifiable through ex vivo whole blood stimulation assays, may be indicative of subsequent organ dysfunction. DESIGN: In a prospective observational study, adult septic patients and critically ill but nonseptic controls were identified within 48 hours of critical illness onset. Using a rapid, ex vivo assay based on responses to lipopolysaccharide (LPS), anti-CD3/anti-CD28 antibodies, and phorbol 12-myristate 13-acetate with ionomycin, cytokine responses to immune stimulants were quantified. The primary outcome was the relationship between early cytokine production and subsequent organ dysfunction, as measured by the Sequential Organ Failure Assessment score on day 3 of illness (SOFAd3). SETTING: Patients were recruited in an academic medical center and data processing and analysis were done in an academic laboratory setting. PATIENTS: Ninety-six adult septic and critically ill nonseptic patients were enrolled. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Elevated levels of tumor necrosis factor and interleukin-6 post-endotoxin challenge were inversely correlated with SOFAd3. Interferon-gamma production per lymphocyte was inversely related to organ dysfunction at day 3 and differed between septic and nonseptic patients. Clustering analysis revealed two distinct immune phenotypes, represented by differential responses to 18 hours of LPS stimulation and 4 hours of anti-CD3/anti-CD28 stimulation. CONCLUSIONS: Our rapid immune profiling technique offers a promising tool for early prediction and management of organ dysfunction in critically ill patients. This information could be pivotal for early intervention and for preventing irreversible organ damage during the acute phase of critical illness.


Assuntos
Estado Terminal , Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Estudos Prospectivos , Sepse/imunologia , Sepse/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/diagnóstico , Idoso , Escores de Disfunção Orgânica , Adulto , Citocinas/sangue , Citocinas/metabolismo , Estudos de Coortes , Valor Preditivo dos Testes , Lipopolissacarídeos/farmacologia
3.
Intensive Care Med Exp ; 11(1): 70, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831231

RESUMO

BACKGROUND: Sepsis is characterized by highly heterogeneous immune responses associated with a spectrum of disease severity. Methods that rapidly and sensitively profile these immune responses can potentially personalize immune-adjuvant therapies for sepsis. We hypothesized that the ELLA microfluidic approach to measure cytokine production from the whole blood of septic and critically ill patients would deliver faster, more precise results than the existing optic-driven ELISpot quantification. We tested our hypothesis by measuring ex vivo-stimulated production of TNF and IFNγ in critically ill and septic patients (n = 22), critically ill and non-septic patients (n = 10), and healthy volunteers (n = 10) through both ELLA and ELISpot immunoassays. Blood samples were subjected to one of three stimulants for 4 h or 18 h durations during days 1, 7-10, and 14 of critical illness. Stimulants for lymphocytes included anti-CD3/anti-CD28 and phorbol 12-myristate 13-acetate (PMA), whereas LPS was used for monocytes. Stimulated TNF and IFNγ concentrations were then associated with 30-day mortality. RESULTS: Both ELISpot and ELLA immunoassays showed substantial agreement in TNF concentrations post 4 h and 18 h LPS stimulation, with concordance correlation coefficients at 0.62 and 0.60, respectively. ELLA had a broad dynamic measurement range and provided accurate TNF and IFNγ readings at both minimal and elevated cytokine concentrations (with mean coefficients of variation between triplicate readings at 2.1 ± 1.4% and 4.9 ± 7.2%, respectively). However, there was no association between the ELLA-determined cytokine concentrations on the first day of critical illness and 30-day mortality rate. In contrast, using the ELISpot for cytokine quantification revealed that non-survivors had reduced baseline TNF levels at 18 h, decreased LPS-induced TNF levels at 18 h, and diminished TNF levels post 4 h/18 h anti-CD3/28 stimulation. CONCLUSIONS: Our study affirms the feasibility of obtaining dependable immune phenotyping data within 6 h of blood collection from critically ill patients, both septic and non-septic, using the ELLA immunoassay. Both ELLA and ELISpot can offer valuable insights into prognosis, therapeutic strategies, and the underlying mechanisms of sepsis development.

4.
Front Immunol ; 13: 940030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860253

RESUMO

Background: Cell-based functional immune-assays may allow for risk stratification of patients with complex, heterogeneous immune disorders such as sepsis. Given the heterogeneity of patient responses and the uncertain immune pathogenesis of sepsis, these assays must first be defined and calibrated in the healthy population. Objective: Our objective was to compare the internal consistency and practicality of two immune assays that may provide data on surrogate markers of the innate and adaptive immune response. We hypothesized that a rapid turnaround, microfluidic-based immune assay (ELLA) would be comparable to a dual-color, enzyme-linked immunospot (ELISpot) assay in identifying tumor necrosis factor (TNF) and interferon (IFN)γ production following ex vivo whole blood stimulation. Design: This was a prospective, observational cohort analysis. Whole blood samples from ten healthy, immune-competent volunteers were stimulated for either 4 hours or 18 hours with lipopolysaccharide, anti-CD3/anti-CD28 antibodies, or phorbol 12-myristate 13-acetate with ionomycin to interrogate innate and adaptive immune responses, respectively. Measurements and Main Results: ELLA analysis produced more precise measurement of TNF and IFNγ concentrations as compared with ELISpot, as well as a four- to five-log10 dynamic range for TNF and IFNγ concentrations, as compared with a two-log10 dynamic range with ELISpot. Unsupervised clustering accurately predicted the ex vivo immune stimulant used for 90% of samples analyzed via ELLA, as compared with 72% of samples analyzed via ELISpot. Conclusions: We describe, for the first time, a rapid and precise assay for functional interrogation of the innate and adaptive arms of the immune system in healthy volunteers. The advantages of the ELLA microfluidic platform may represent a step forward in generating a point-of-care test with clinical utility, for identifying deranged immune phenotypes in septic patients.


Assuntos
Citocinas , Sepse , ELISPOT , Humanos , Interferon gama , Estudos Prospectivos , Sepse/diagnóstico , Acetato de Tetradecanoilforbol , Fator de Necrose Tumoral alfa
5.
Front Immunol ; 13: 1007016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466851

RESUMO

Highly heterogeneous cell populations require multiple flow cytometric markers for appropriate phenotypic characterization. This exponentially increases the complexity of 2D scatter plot analyses and exacerbates human errors due to variations in manual gating of flow data. We describe a semi-automated workflow, based entirely on the Flowjo Graphical User Interface (GUI), that involves the stepwise integration of several, newly available machine learning tools for the analysis of myeloid-derived suppressor cells (MDSCs) in septic and non-septic critical illness. Supervised clustering of flow cytometric data showed correlation with, but significantly different numbers of, MDSCs as compared with the cell numbers obtained by manual gating. Neither quantification method predicted 30-day clinical outcomes in a cohort of 16 critically ill and septic patients and 5 critically ill and non-septic patients. Machine learning identified a significant decrease in the proportion of PMN-MDSC in critically ill and septic patients as compared with healthy controls. There was no difference between the proportion of these MDSCs in septic and non-septic critical illness.


Assuntos
Células Supressoras Mieloides , Sepse , Humanos , Estado Terminal , Aprendizado de Máquina , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa