Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405911

RESUMO

Two clinical isolates of the opportunist pathogen Pseudomonas aeruginosa named PAO1 and PA14 are commonly studied in research laboratories. Despite the isolates being closely related, PA14 exhibits increased virulence compared to that of PAO1 in various models. To determine which players are responsible for the hypervirulence phenotype of the PA14 strain, we elected a transcriptomic approach through RNA sequencing. We found 2,029 genes that are differentially expressed between the two strains, including several genes that are involved with or regulated by quorum sensing (QS), known to control most of the virulence factors in P. aeruginosa Among them, we chose to focus our study on QslA, an antiactivator of QS whose expression was barely detectable in the PA14 strain according our data. We hypothesized that lack of expression of qslA in PA14 could be responsible for higher QS expression in the PA14 strain, possibly explaining its hypervirulence phenotype. After confirming that QslA protein was highly produced in PAO1 but not in the PA14 strain, we obtained evidence showing that a PAO1 deletion strain of qslA has faster QS gene expression kinetics than PA14. Moreover, known virulence factors activated by QS, such as (i) pyocyanin production, (ii) H2-T6SS (type VI secretion system) gene expression, and (iii) Xcp-T2SS (type II secretion system) machinery production and secretion, were all lower in PAO1 than in PA14, due to higher qslA expression. However, biofilm formation and cytotoxicity toward macrophages, although increased in PA14 compared to PAO1, were independent of QslA control. Together, our findings implicated differential qslA expression as a major determinant of virulence factor expression in P. aeruginosa strains PAO1 and PA14.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen responsible for acute nosocomial infections and chronic pulmonary infections. P. aeruginosa strain PA14 is known to be hypervirulent in different hosts. Despite several studies in the field, the underlining molecular mechanisms sustaining this phenotype remain enigmatic. Here we provide evidence that the PA14 strain has faster quorum sensing (QS) kinetics than the PAO1 strain, due to the lack of QslA expression, an antiactivator of QS. QS is a major regulator of virulence factors in P. aeruginosa; therefore, we propose that the hypervirulent phenotype of the PA14 strain is, at least partially, due to the lack of QslA expression. This mechanism could be of great importance, as it could be conserved among other P. aeruginosa isolates.


Assuntos
Proteínas de Bactérias/genética , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Transdução de Sinais/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Sistemas de Secreção Tipo VI/genética , Virulência/genética , Fatores de Virulência/genética
2.
FEMS Microbiol Lett ; 366(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253991

RESUMO

Twitter is one of the most popular social media networks that, in recent years, has been increasingly used by researchers as a platform to share science and discuss ongoing work. Despite its popularity, Twitter is not commonly used as a medium to teach science. Here, we summarize the results of #EUROmicroMOOC: the first worldwide Microbiology Massive Open Online Course taught in English using Twitter. Content analytics indicated that more than 3 million users saw posts with the hashtag #EUROmicroMOOC, which resulted in over 42 million Twitter impressions worldwide. These analyses demonstrate that free Microbiology MOOCs shared on Twitter are valuable educational tools that reach broad audiences throughout the world. We also describe our experience teaching an entire Microbiology course using Twitter and provide recommendations when using social media to communicate science to a broad audience.


Assuntos
Microbiologia , Mídias Sociais , Comunicação , Disseminação de Informação/métodos , Rede Social
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa