Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445778

RESUMO

Accumulating evidence suggests the critical role of the gut-brain axis (GBA) in Parkinson's disease (PD) pathology and treatment. Recently, stem cell transplantation in transgenic PD mice further implicated the GBA's contribution to the therapeutic effects of transplanted stem cells. In particular, intravenous transplantation of human umbilical-cord-blood-derived stem/progenitor cells and plasma reduced motor deficits, improved nigral dopaminergic neuronal survival, and dampened α-synuclein and inflammatory-relevant microbiota and cytokines in both the gut and brain of mouse and rat PD models. That the gut robustly responded to intravenously transplanted stem cells and prompted us to examine in the present study whether direct cell implantation into the gut of transgenic PD mice would enhance the therapeutic effects of stem cells. Contrary to our hypothesis, results revealed that intragut transplantation of stem cells exacerbated motor and gut motility deficits that corresponded with the aggravated expression of inflammatory microbiota, cytokines, and α-synuclein in both the gut and brain of transgenic PD mice. These results suggest that, while the GBA stands as a major source of inflammation in PD, targeting the gut directly for stem cell transplantation may not improve, but may even worsen, functional outcomes, likely due to the invasive approach exacerbating the already inflamed gut. The minimally invasive intravenous transplantation, which likely avoided worsening the inflammatory response of the gut, appears to be a more optimal cell delivery route to ameliorate PD symptoms.


Assuntos
Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Substância Negra/metabolismo , Transplante de Células-Tronco , Citocinas/metabolismo
2.
J Cell Mol Med ; 23(8): 5466-5474, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148353

RESUMO

Current therapies for Parkinson's disease (PD), including L-3,4-dihydroxyphenylalanine (L-DOPA), and clinical trials investigating dopaminergic cell transplants, have generated mixed results with the eventual induction of dyskinetic side effects. Although human umbilical cord blood (hUCB) stem/progenitor cells present with no or minimal capacity of differentiation into mature dopaminergic neurons, their transplantation significantly attenuates parkinsonian symptoms likely via bystander effects, specifically stem cell graft-mediated secretion of growth factors, anti-inflammatory cytokines, or synaptic function altogether promoting brain repair. Recognizing this non-cell replacement mechanism, we examined here the effects of intravenously transplanted combination of hUCB-derived plasma into the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced rat model of PD. Animals received repeated dosing of either hUCB-derived plasma or vehicle at 3, 5 and 10 days after induction into MPTP lesion, then behaviourally and immunohistochemically evaluated over 56 days post-lesion. Compared to vehicle treatment, transplantation with hUCB-derived plasma significantly improved motor function, gut motility and dopaminergic neuronal survival in the substantia nigra pars compacta (SNpc), which coincided with reduced pro-inflammatory cytokines in both the SNpc and the intestinal mucosa and dampened inflammation-associated gut microbiota. These novel data directly implicate a key pathological crosstalk between gut and brain ushering a new avenue of therapeutically targeting the gut microbiome with hUCB-derived stem cells and plasma for PD.


Assuntos
Encéfalo/patologia , Sangue Fetal/citologia , Microbioma Gastrointestinal/fisiologia , Inflamação/patologia , Doença de Parkinson/terapia , Parte Compacta da Substância Negra/patologia , Cordão Umbilical/citologia , Animais , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Citocinas/metabolismo , Di-Hidroxifenilalanina/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Sangue Fetal/metabolismo , Humanos , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo , Cordão Umbilical/metabolismo
3.
Stroke ; 50(8): 2197-2206, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31242827

RESUMO

Background and Purpose- Retinal ischemia is a major cause of visual impairment in stroke patients, but our incomplete understanding of its pathology may contribute to a lack of effective treatment. Here, we investigated the role of mitochondrial dysfunction in retinal ischemia and probed the potential of mesenchymal stem cells (MSCs) in mitochondrial repair under such pathological condition. Methods- In vivo, rats were subjected to middle cerebral artery occlusion then randomly treated with intravenous MSCs or vehicle. Laser Doppler was used to evaluate the blood flow in the brain and the eye, while immunohistochemical staining assessed cellular degeneration at days 3 and 14 poststroke. In vitro, retinal pigmented epithelium cells were exposed to either oxygen-glucose deprivation or oxygen-glucose deprivation and coculture with MSCs, and subsequently, cell death and mitochondrial function were examined immunocytochemically and with Seahorse analyzer, respectively. Results- Middle cerebral artery occlusion significantly reduced blood flow in the brain and the eye accompanied by mitochondrial dysfunction and ganglion cell death at days 3 and 14 poststroke. Intravenous MSCs elicited mitochondrial repair and improved ganglion cell survival at day 14 poststroke. Oxygen-glucose deprivation similarly induced mitochondrial dysfunction and cell death in retinal pigmented epithelium cells; coculture with MSCs restored mitochondrial respiration, mitochondrial network morphology, and mitochondrial dynamics, which likely attenuated oxygen-glucose deprivation-mediated retinal pigmented epithelium cell death. Conclusions- Retinal ischemia is closely associated with mitochondrial dysfunction, which can be remedied by stem cell-mediated mitochondrial repair.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Isquemia/patologia , Transplante de Células-Tronco Mesenquimais , Mitocôndrias/patologia , Vasos Retinianos/patologia , Acidente Vascular Cerebral/patologia , Animais , Sobrevivência Celular/fisiologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Isquemia/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ratos , Vasos Retinianos/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
4.
J Cell Mol Med ; 22(12): 6157-6166, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30334335

RESUMO

Limited efficacy of current therapeutic approaches for neurodegenerative disease has led to increased interest in alternative therapies. Cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may be a potential therapeutic. Benefits of CBP injection into rodent models of aging or ischaemic stroke have been demonstrated, though how benefits are elicited is still unclear. The present study evaluated various factors within the same samples of CBP and human adult blood plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were determined. Results showed significantly low concentrations of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) and elevated chemokine IL-8 in CBP. Significantly higher levels of VEGF, G-CSF, EGF and FGF-basic growth factors were determined in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC hUCB viability and decreased apoptotic cell activity. We are first to demonstrate the unique CBP composition of cytokines and growth factors within the same CBP samples derived from hUCB. Also, our novel finding that autologous CBP promoted MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP's potential as a sole therapeutic or cell-additive agent in developing therapies for various neurodegenerative diseases.


Assuntos
Citocinas/genética , Sangue Fetal/metabolismo , Doenças Neurodegenerativas/terapia , Plasma/metabolismo , Animais , Apoptose/genética , Isquemia Encefálica/sangue , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Sangue Fetal/transplante , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/patologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
5.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385088

RESUMO

Amyotrophic lateral sclerosis (ALS) is a multifactorial disease with limited therapeutic options. Numerous intrinsic and extrinsic factors are involved in ALS motor neuron degeneration. One possible effector accelerating motor neuron death in ALS is damage to the blood-Central Nervous System barrier (B-CNS-B), mainly due to endothelial cell (EC) degeneration. Although mechanisms of EC damage in ALS are still unknown, vascular impairment may be initiated by various humoral inflammatory factors and other mediators. Systemic IL-6-mediated inflammation is a possible early extrinsic effector leading to the EC death causing central nervous system (CNS) barrier damage. In this review, we discuss the potential role of humoral factors in triggering EC alterations in ALS. A specific focus was on humoral IL-6 cytokine mediating EC inflammation via the trans-signaling pathway. Our preliminary in vitro studies demonstrated a proof of principle that short term exposure of human bone marrow endothelial cells to plasma from ALS patient leads to cell morphological changes, significantly upregulated IL-6R immunoexpression, and pro-inflammatory cell response. Our in-depth understanding of specific molecular mechanisms of this humoral cytokine in EC degeneration may facilitate an endothelial-IL-6-targeting therapy for restoring cell homeostasis and eventually reestablishing B-CNS-B integrity in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Células Endoteliais/metabolismo , Inflamação , Interleucina-6/fisiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Células Endoteliais/patologia , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Transdução de Sinais
6.
J Cell Physiol ; 232(3): 665-677, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27699791

RESUMO

In testing the hypothesis of Alzheimer's disease (AD)-like pathology in late stage traumatic brain injury (TBI), we evaluated AD pathological markers in late stage TBI model. Sprague-Dawley male rats were subjected to moderate controlled cortical impact (CCI) injury, and 6 months later euthanized and brain tissues harvested. Results from H&E staining revealed significant 33% and 10% reduction in the ipsilateral and contralateral hippocampal CA3 interneurons, increased MHCII-activated inflammatory cells in many gray matter (8-20-fold increase) and white matter (6-30-fold increased) regions of both the ipsilateral and contralateral hemispheres, decreased cell cycle regulating protein marker by 1.6- and 1-fold in the SVZ and a 2.3- and 1.5-fold reductions in the ipsilateral and contralateral dentate gyrus, diminution of immature neuronal marker by two- and onefold in both the ipsilateral and contralateral SVZ and dentate gyrus, and amplified amyloid precursor protein (APP) distribution volumes in white matter including corpus callosum, fornix, and internal capsule (4-38-fold increase), as well as in the cortical gray matter, such as the striatum hilus, SVZ, and dentate gyrus (6-40-fold increase) in TBI animals compared to controls (P's < 0.001). Surrogate AD-like phenotypic markers revealed a significant accumulation of phosphorylated tau (AT8) and oligomeric tau (T22) within the neuronal cell bodies in ipsilateral and contralateral cortex, and dentate gyrus relative to sham control, further supporting the rampant neurodegenerative pathology in TBI secondary cell death. These findings indicate that AD-like pathological features may prove to be valuable markers and therapeutic targets for late stage TBI. J. Cell. Physiol. 232: 665-677, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Proteínas tau/metabolismo , Animais , Morte Celular , Proliferação de Células , Doença Crônica , Giro Denteado/metabolismo , Giro Denteado/patologia , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Neurogênese , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Multimerização Proteica , Ratos Sprague-Dawley , Substância Branca/metabolismo , Substância Branca/patologia
7.
Proc Natl Acad Sci U S A ; 111(18): 6542-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24778248

RESUMO

There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future.

9.
Adv Exp Med Biol ; 951: 111-121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27837558

RESUMO

Accumulating evidence has demonstrated that menstrual blood stands as a viable source of stem cells. Menstrual blood-derived stem cells (MenSCs) are morphologically and functionally similar to cells directly extracted from the endometrium, and present dual expression of mesenchymal and embryonic cell markers, thus becoming interesting tools for regenerative medicine. Functional reports show higher proliferative and self-renewal capacities than bone marrow-derived stem cells, as well as successful differentiation into hepatocyte-like cells, glial-like cells, endometrial stroma-like cells, among others. Moreover, menstrual blood stem cells may be used with increased efficiency in reprogramming techniques for induced Pluripotent Stem cell (iPS) generation. Experimental studies have shown successful treatment of stroke, colitis, limb ischemia, coronary disease, Duchenne's muscular atrophy and streptozotocin-induced type 1 diabetes animal models with MenSCs. As we envision an off-the-shelf product for cell therapy, cryopreserved MenSCs appear as a feasible clinical product. Clinical applications, although still very limited, have great potential and ongoing studies should be disclosed in the near future.


Assuntos
Colite/terapia , Criopreservação/métodos , Endométrio/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Distrofia Muscular de Duchenne/terapia , Acidente Vascular Cerebral/terapia , Animais , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Ensaios Clínicos como Assunto , Colite/patologia , Criopreservação/ética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Modelos Animais de Doenças , Endométrio/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Menstruação/fisiologia , Camundongos , Distrofia Muscular de Duchenne/patologia , Acidente Vascular Cerebral/patologia
10.
J Cell Physiol ; 230(5): 1024-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25251017

RESUMO

The long-term consequences of traumatic brain injury (TBI) are closely associated with the development of histopathological deficits. Notably, TBI may predispose long-term survivors to age-related neurodegenerative diseases, such as Parkinson's disease (PD), which is characterized by a gradual degeneration of the nigrostriatal dopaminergic neurons. However, preclinical studies on the pathophysiological changes in substantia nigra (SN) after chronic TBI are lacking. In the present in vivo study, we examined the pathological link between PD-associated dopaminergic neuronal loss and chronic TBI. Sixty days post-TBI, rats were euthanized and brain tissues harvested. Immunostaining was performed using tyrosine hydroxylase (TH), an enzyme required for the synthesis of dopamine in neurons, α-synuclein, a presynaptic protein that plays a role in synaptic vesicle recycling, and major histocompatibility complex II (MHCII), a protein found in antigen presenting cells such as inflammatory microglia cells, all key players in PD pathology. Unbiased stereology analyses revealed significant decrease of TH-positive expression in the surviving dopaminergic neurons of the SN pars compacta (SNpc) relative to sham control. In parallel, increased α-synuclein accumulation was detected in the ipsilateral SN compared to the contralateral SN in TBI animals or sham control. In addition, exacerbation of MHCII+ cells was recognized in the SN and cerebral peduncle ipsilateral to injury relative to contralateral side and sham control. These results suggest α-synuclein as a pathological link between chronic effects of TBI and PD symptoms as evidenced by significant overexpression and abnormal accumulation of α-synuclein in inflammation-infiltrated SN of rats exposed to chronic TBI.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Pedúnculo Cerebral/metabolismo , Pedúnculo Cerebral/patologia , Doença Crônica , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação para Baixo , Antígenos de Histocompatibilidade Classe II/metabolismo , Microglia/metabolismo , Microglia/patologia , Modelos Biológicos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima
11.
J Neuroinflammation ; 12: 127, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26126965

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS: Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS: ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS: Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Progressão da Doença , Interleucina-2/sangue , Interleucina-5/sangue , Interleucina-6/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Glutationa/sangue , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Nitritos/sangue , Prognóstico
12.
Nature ; 502(7472): 448, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24153288
13.
Int J Mol Sci ; 15(1): 895-904, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24413756

RESUMO

Traumatic brain injury (TBI) occurs in response to an acute insult to the head and is recognized as a major risk factor for Alzheimer's disease (AD). Indeed, recent studies have suggested a pathological overlap between TBI and AD, with both conditions exhibiting amyloid-beta (Aß) deposits, tauopathy, and neuroinflammation. Additional studies involving animal models of AD indicate that some AD-related genotypic determinants may be critical factors enhancing temporal and phenotypic symptoms of TBI. Thus in the present study, we examined sub-acute effects of moderate TBI delivered by a gas-driven shock tube device in Aß depositing Tg2576 mice. Three days later, significant increases in b-amyloid deposition, glycogen synthase-3 (GSK-3) activation, phospho-tau, and pro-inflammatory cytokines were observed. Importantly, peripheral treatment with the naturally occurring flavonoid, luteolin, significantly abolished these accelerated pathologies. This study lays the groundwork for a safe and natural compound that could prevent or treat TBI with minimal or no deleterious side effects in combat personnel and others at risk or who have experienced TBI.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Lesões Encefálicas/complicações , Encéfalo/efeitos dos fármacos , Luteolina/uso terapêutico , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Citocinas/genética , Citocinas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Luteolina/farmacocinética , Luteolina/farmacologia , Camundongos , Distribuição Tecidual , Proteínas tau/metabolismo
14.
Int J Mol Sci ; 15(9): 15225-43, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25170809

RESUMO

Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Caracteres Sexuais , Transplante de Células-Tronco/métodos , Células-Tronco Adultas/transplante , Animais , Feminino , Humanos , Masculino
15.
BMC Neurol ; 13: 174, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225396

RESUMO

BACKGROUND: Mucopolysaccharidosis type III (MPS III) is an autosomal recessive disorder caused by deficiency of a specific enzyme leading to heparan sulfate (HS) accumulation within cells and to eventual progressive cerebral and systemic organ abnormalities. Different enzyme deficiencies comprise the MPS III subcategories (A, B, C, D). Since neuropathological manifestations are common to all MPS III types, determining blood-brain barrier (BBB) condition may be critical to understand potential additional disease mechanisms. METHODS: We investigated BBB integrity in various brain structures of post-mortem tissues from an eleven year old Caucasian female with MPS III A and from a twenty four year old Caucasian female with MPS III D. Control tissues were obtained post-mortem from three Caucasians without neurological deficits: a twelve year old male, a twenty four year old female, and a twenty seven year old female. BBB capillary ultrastructure (electron microscopy) and capillary functional integrity (IgG leakage, tight junction proteins, and lysosomal accumulation within endothelium) were examined. RESULTS: Compromised BBB integrity was found in both MPS III cases. Major study findings were: (1) capillary endothelial and pericyte cell damage; (2) mucopolysaccharide bodies in a majority of endothelial cells and pericytes rupturing cell membranes; (3) severe extracellular edema; (4) IgG microvascular leakage and reductions of occludin and claudin-5 with variations between MPS III types; (5) extensive lysosomal accumulation in capillary endothelium. CONCLUSIONS: These new findings of BBB structural and functional impairment, although from only two cases, MPS III A and III D, may have implications for disease pathogenesis and should be considered in treatment development for MPS III.


Assuntos
Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Encéfalo/patologia , Encéfalo/ultraestrutura , Mucopolissacaridose III/diagnóstico , Adulto , Criança , Feminino , Humanos , Masculino , Mucopolissacaridose III/fisiopatologia , Adulto Jovem
16.
Neurosci Biobehav Rev ; 151: 105234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196924

RESUMO

The American Society for Neural Therapy and Repair (ASNTR) started 30 years ago in 1993 as the American Society for Neural Transplantation (ASNT), with an emphasis on neural transplantation. Through the years, the Society has been shaped as much by our expanding knowledge of neurodegenerative disorders and how to treat them as it has by politics and culture. What once felt like a leash on neuroscience research, has turned into an advantage as neural transplantation evolved into Neural Therapy and Repair. As a Co-Founder this brief commentary provides a personalized account of our research during the Society's years.


Assuntos
Doenças Neurodegenerativas , Política , Humanos , Estados Unidos
17.
Regen Ther ; 23: 52-59, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37122360

RESUMO

Cell therapies have been explored to treat patients with nervous diseases for over 20 years. Even though most kinds of cell therapies demonstrated neurorestorative effects in non-randomized clinical trials; the effects of the majority type cells could not be confirmed by randomized controlled trials. In this review, clinical therapeutic results of neurorestorative cell therapies according to cellular bio-proprieties or cellular functions were introduced. Currently it was demonstrated from analysis of this review that some indications of cell therapies were not appropriate, they might be reasons why their neurorestorative effects could not be proved by multicenter, randomized, double blind, placebo-controlled clinical trials. Theoretically if one kind of cell therapy has neurorestorative effects according to its cellular bio-proprieties, it should have appropriate indications. The cell therapies with special bio-properties is promising if the indication selections are appropriate, such as olfactory ensheathing cells for chronic ischemic stroke, and their neurorestorative effects can be confirmed by higher level clinical trials of evidence-based medicine.

18.
J Neuroinflammation ; 9: 185, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22849382

RESUMO

A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer's disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/prevenção & controle , Lesões Encefálicas/imunologia , Lesões Encefálicas/prevenção & controle , Encéfalo/imunologia , Progressão da Doença , Doença de Alzheimer/epidemiologia , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/epidemiologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/fisiologia
19.
Br Med Bull ; 101: 163-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22357552

RESUMO

Introduction Neurological disorders are routinely characterized by loss of cells in response to an injury or a progressive insult. Stem cells could therefore be useful to treat these disorders. Sources of data Pubmed searches of recent literature. Areas of agreement Stem cells exhibit proliferative capacity making them ideally suited for replacing dying cells. However, instead of cell replacement therapy stem cell transplants frequently appear to work via neurotrophic factor release, immunomodulation and upregulation of endogenous stem cells. Areas of controversy and areas timely for developing research Many questions remain with respect to the use of stem cells as a therapy, the answers to which will vary depending on the disorder to be treated and mode of action. Whereas the potential tumorigenic capability of stem cells is a concern, most studies do not support this notion. Further determination of the optimal cell type, and whether to perform allogeneic or autologous transplants warrant investigation before the full potential of stem cells can be realized. In addition, the use of stem cells to develop disease models should not be overlooked.


Assuntos
Doenças do Sistema Nervoso/terapia , Transplante de Células-Tronco/métodos , Pesquisa Biomédica/métodos , Transformação Celular Neoplásica , Ensaios Clínicos como Assunto , Humanos , Transplante de Células-Tronco/efeitos adversos
20.
Cell Death Discov ; 8(1): 396, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153318

RESUMO

Parkinson's disease (PD) remains a significant unmet clinical need. Gut dysbiosis stands as a PD pathologic source and therapeutic target. Here, we assessed the role of the gut-brain axis in PD pathology and treatment. Adult transgenic (Tg) α-synuclein-overexpressing mice served as subjects and were randomly assigned to either transplantation of vehicle or human umbilical cord blood-derived stem cells and plasma. Behavioral and immunohistochemical assays evaluated the functional outcomes following transplantation. Tg mice displayed typical motor and gut motility deficits, elevated α-synuclein levels, and dopaminergic depletion, accompanied by gut dysbiosis characterized by upregulation of microbiota and cytokines associated with inflammation in the gut and the brain. In contrast, transplanted Tg mice displayed amelioration of motor deficits, improved sparing of nigral dopaminergic neurons, and downregulation of α-synuclein and inflammatory-relevant microbiota and cytokines in both gut and brain. Parallel in vitro studies revealed that cultured dopaminergic SH-SY5Y cells exposed to homogenates of Tg mouse-derived dysbiotic gut exhibited significantly reduced cell viability and elevated inflammatory signals compared to wild-type mouse-derived gut homogenates. Moreover, treatment with human umbilical cord blood-derived stem cells and plasma improved cell viability and decreased inflammation in dysbiotic gut-exposed SH-SY5Y cells. Intravenous transplantation of human umbilical cord blood-derived stem/progenitor cells and plasma reduced inflammatory microbiota and cytokine, and dampened α-synuclein overload in the gut and the brain of adult α-synuclein-overexpressing Tg mice. Our findings advance the gut-brain axis as a key pathological origin, as well as a robust therapeutic target for PD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa