Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
2.
Nature ; 585(7825): 420-425, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879486

RESUMO

The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.


Assuntos
Cor , Luz , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/efeitos da radiação , Opsinas/metabolismo , Área Pré-Óptica/citologia , Termogênese/efeitos da radiação , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Temperatura Corporal , Temperatura Baixa , AMP Cíclico/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Opsinas/deficiência , Opsinas/genética , Termogênese/genética
3.
Nat Chem Biol ; 14(11): 1021-1031, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327559

RESUMO

Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but are thought to be primarily diet derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity influencing acyl-chain diversity in the lipidome.


Assuntos
Tecido Adiposo/enzimologia , Aminoácidos de Cadeia Ramificada/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Obesidade/enzimologia , Células 3T3 , Adipócitos/citologia , Animais , Sistemas CRISPR-Cas , Carnitina O-Acetiltransferase/metabolismo , Citosol/metabolismo , Feminino , Hipóxia , Lentivirus/genética , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , RNA Interferente Pequeno/metabolismo
4.
Handb Exp Pharmacol ; 251: 3-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30203328

RESUMO

Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo Marrom , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2 , Adulto , Metabolismo Energético , Humanos , Termogênese/fisiologia
5.
Biochim Biophys Acta ; 1842(3): 340-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23747579

RESUMO

The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Assuntos
Adipócitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Distribuição da Gordura Corporal , Linhagem da Célula , Humanos , Camundongos , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Obesidade/patologia , Termogênese/genética
6.
J Vis Exp ; (195)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246886

RESUMO

Fatty acid synthesis is a complex and highly energy demanding metabolic pathway with important functional roles in the control of whole-body metabolic homeostasis and other physiological and pathological processes. Contrary to other key metabolic pathways, such as glucose disposal, fatty acid synthesis is not routinely functionally assessed, leading to incomplete interpretations of metabolic status. In addition, there is a lack of publicly available detailed protocols suitable for newcomers in the field. Here, we describe an inexpensive quantitative method utilizing deuterium oxide and gas chromatography mass spectrometry (GCMS) for the analysis of total fatty acid de novo synthesis in brown adipose tissue in vivo. This method measures the synthesis of the products of fatty acid synthase independently of a carbon source, and it is potentially useful for virtually any tissue, in any mouse model, and under any external perturbation. Details on the sample preparation for GCMS and downstream calculations are provided. We focus on the analysis of brown fat due to its high levels of de novo fatty acid synthesis and critical roles in maintaining metabolic homeostasis.


Assuntos
Tecido Adiposo Marrom , Ácidos Graxos , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Óxido de Deutério , Ácidos Graxos/metabolismo , Lipogênese , Glucose/metabolismo , Tecido Adiposo/metabolismo
7.
Shock ; 59(5): 779-790, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840516

RESUMO

ABSTRACT: Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis. STAT3 is abundantly expressed in white adipose tissue; however, little is known about the contribution of white adipose tissue STAT3 activation during sepsis. We hypothesize that adipocyte STAT3 inhibition during severe sepsis will exaggerate the inflammatory response and impact organ injury, in a sex-dependent manner. Methods: We generated STAT3 flox/flox (wild-type [WT]) and adipocyte STAT3 knock out (A-STAT3 KO) mice using Cre-lox technology. Studies were done in 12- to 16-week-old male and female mice. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Control nonseptic mice did not undergo CLP (0 h CLP). Tissues were harvested 18 h after CLP. Body composition was determined by echo magnetic resonance imaging. Energy metabolism was determined by indirect calorimetry. White adipose tissue morphology was determined by hematoxylin and eosin staining, while STAT3 activation in the white adipose tissue was determined by western blot analysis and immunohistochemistry staining of STAT3 activation/phosphorylation at tyrosine 705. Plasma cytokines (TNF-α, IL-6, and leptin) were determined by luminex assay. Neutrophil infiltration of the lung and liver was assessed by myeloperoxidase activity assay. Histological signs of organ injury on lung and liver tissue were assessed by hematoxylin and eosin staining. Liver injury was further assessed by measuring plasma alanine and aspartate aminotransferase. In a separate cohort of mice, sepsis was induced by CLP and mice were monitored every 6-12 h over a 7-day period to assess survival rate. Results: We demonstrate that neither body composition nor energy metabolism is altered with adipocyte STAT3 inhibition in male or female mice, under nonseptic conditions. Sepsis was associated with reduced adipocyte size in female WT and A-STAT3 KO mice, suggesting that this event is STAT3 independent. Sepsis did not alter adipocyte size in male WT and A-STAT3 KO mice, suggesting that this event is also sex dependent. Although STAT3 phosphorylation at tyrosine 705 expression is negligible in male and female A-STAT3 KO mice, septic female WT and A-STAT3 KO mice have higher white adipose tissue STAT3 activation than male WT and A-STAT3 KO mice. Adipocyte STAT3 inhibition did not alter the proinflammatory cytokine response during sepsis in male or female mice, as measured by plasma TNF-α, IL-6, and leptin levels. Adipocyte STAT3 inhibition reduced lung neutrophil infiltration and histological signs of lung injury during sepsis in male mice. On the contrary, adipocyte STAT3 inhibition had no effect on lung neutrophil infiltration or lung injury in female mice. We further demonstrate that neither liver neutrophil infiltration nor histological signs of liver injury are altered by adipocyte STAT3 inhibition during sepsis, in male or female mice. Lastly, adipocyte STAT3 inhibition did not affect survival rate of male or female mice during sepsis. Conclusions: Our study demonstrates that sex influences white adipose tissue STAT3 activation and morphology during sepsis, which is not dependent on the presence of functional STAT3 in mature adipocytes. Furthermore, genetic inhibition of adipocyte STAT3 activation in male, but not female mice, results in reduced lung neutrophil infiltration and lung injury during sepsis. The results from our study demonstrate the importance of considering biological sex and the white adipose tissue as potential sources and targets of inflammation during sepsis.


Assuntos
Lesão Pulmonar , Sepse , Masculino , Camundongos , Animais , Leptina , Lesão Pulmonar/complicações , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator de Transcrição STAT3/genética , Amarelo de Eosina-(YS) , Hematoxilina , Sepse/patologia , Citocinas , Inflamação , Adipócitos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904917

RESUMO

Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we performed comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibited major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, growth defects, and craniofacial abnormalities. Mapping the transgene insertion site revealed insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of the intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.

9.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36865239

RESUMO

Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS: Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors.

10.
Cell Rep Med ; 4(12): 101337, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118404

RESUMO

Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identify CD271+ progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271+ progenitors demonstrate robust in vivo angiogenic capacity over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271+ progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271+ progenitors are strikingly reduced in insulin-resistant donors. Our study highlights the identification of AT-CD271+ progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy.


Assuntos
Angiogênese , Perfilação da Expressão Gênica , Humanos , Adapaleno , Tecido Adiposo , Isquemia/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-22626869

RESUMO

In the present study, we describe an initial approach to investigate the role of LXR in fish adipose tissue. Rainbow trout (Oncorhynchus mykiss) isolated adipocytes were incubated with LXR agonists, unsaturated fatty acids, tumour necrosis factor-α (TNFα), insulin or growth hormone (GH) for 6h and LXR expression was analyzed. Lipolysis was measured after incubation with one of the LXR agonists and LXR expression was compared with levels of lipolysis. LXR expression was also analyzed during the differentiation of adipocytes in culture. The incubations with agonists in isolated adipocytes indicated that ATP-binding cassette transporter A1 (ABCA1) is an LXR target gene, but lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone-sensitive lipase (HSL) and peroxisome proliferator-activated receptor (PPARs) are not. LXR agonists also induced LXR expression and raised lipolysis levels. Besides, LXR expression was upregulated in parallel with basal lipolysis. LXR mRNA expression was regulated by unsaturated fatty acids, insulin, TNFα and GH in isolated adipocytes. Besides, LXR showed an upregulation during adipocyte differentiation. All these data indicate that LXR is involved in orchestrating the transcriptional regulatory network in trout adipocyte lipid metabolism, specifically, in cholesterol transport, adipocyte differentiation and lipolysis.


Assuntos
Adipócitos/metabolismo , Lipólise , Oncorhynchus mykiss/metabolismo , Receptores Nucleares Órfãos/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular , Receptores X do Fígado , Oncorhynchus mykiss/genética , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , RNA Mensageiro/agonistas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-22771331

RESUMO

In the present study, we analyzed endocrine and nutritional regulation of fatty acid (FA) transporters mRNA expression fatty acid transport protein (FATP1) and fatty acid translocase (CD36) in rainbow trout in vivo and in adipocytes and myocytes in vitro. The expression of FATP1 increased with adipocyte and that of CD36 with myocyte in vitro differentiation suggesting a different role for each transporter during the two cell differentiation programs. Food deprivation (15, 25 and 35 days) increased FATP1 and CD36 mRNA expression in white muscle, red muscle and adipose tissue while insulin administration decreased the FATP1 expression in adipose tissue in vivo (21.6 pmol/g body mass) and in vitro (1 µM) in adipocytes. In trout myotubes insulin (1 µM) decreased FATP1 and increased CD36 mRNA expression. Thus, regulation of FA transporters expression by insulin is complex and directed to specific tissue needs. Although FATP1 and CD36 mRNA levels are controlled by insulin, it appears that FATP1 respond more clearly to situations of hyper and hypo-insulinemia in trout muscle and adipose tissue than CD36. FATP1 and CD36 transcription was also modulated by growth hormone in cultured myotubes and isolated adipocytes. Lipopolysaccharide administration (E. coli, serotype O26:B6, 6 µg/g body mass) decreased FATP1 mRNA expression in red muscle, adipose tissue and liver after 24h according to changes in lipid metabolism during infection. Tumor necrosis factor (TNFα) (100 ng/ml) reduced FATP1 expression in isolated adipocytes. Further, insulin (1µM) and IGF-I (100 nM) increased the FA uptake in rainbow trout myotubes through the PI3K/Akt signaling pathway. Overall, we demonstrated not only that feeding condition regulates FATP1 and CD36 mRNA expression in a tissue-specific manner, but also that insulin is an important regulator of these genes in vivo and in vitro and also it stimulates FA uptake in trout muscle cells.


Assuntos
Antígenos CD36/metabolismo , Proteínas de Peixes/metabolismo , Mediadores da Inflamação/fisiologia , Insulina/fisiologia , Oncorhynchus mykiss/metabolismo , RNA Mensageiro/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Antígenos CD36/genética , Diferenciação Celular , Células Cultivadas , Proteínas de Peixes/genética , Privação de Alimentos/fisiologia , Mediadores da Inflamação/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/fisiologia , Lipopolissacarídeos/farmacologia , Fígado/imunologia , Fígado/metabolismo , Fibras Musculares de Contração Rápida/imunologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/imunologia , Fibras Musculares de Contração Lenta/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , RNA Mensageiro/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
13.
Methods Mol Biol ; 2448: 203-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167099

RESUMO

Techniques to trace and isolate brown adipocyte precursor and adipocytes during development and disease are essential to fully understand brown adipose tissue development and function. Here we report several protocols using the R26R-mTmG reporter mice in thermogenic tissues based on confocal microscopy and fluorescence based flow cytometry. These techniques may be useful to understand the influence of genetic or environmental alterations in brown adipocyte precursors and adipocyte biology.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Adipogenia , Animais , Citometria de Fluxo , Camundongos , Termogênese/genética
14.
Am J Physiol Regul Integr Comp Physiol ; 301(4): R947-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775646

RESUMO

We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.


Assuntos
Jejum/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Salmo salar/fisiologia , Animais , Antígenos CD36/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Técnicas In Vitro , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Modelos Animais , Fibras Musculares Esqueléticas/citologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-21635958

RESUMO

The liver X receptor (LXR) has recently been described in salmonids. In mammals, this receptor is already known as a transcriptional factor that regulates diverse aspects of cholesterol, fatty acid and carbohydrate metabolism in various tissues, including muscle. Here we examined LXR in trout myocytes. For this purpose, we analyzed LXR target gene expression and gene profile during myocyte development. In addition, we studied the transcriptional regulation of LXR by hormones, a pro-inflammatory mediator and unsaturated fatty acids. Trout myocytes were incubated with LXR agonists (T091317, 22(R)-hydroxycholesterol) and unsaturated fatty acids for 24h. Furthermore, differentiated myocytes were incubated with insulin and growth hormone (GH) for 3h, 6h and 18h, and with tumor necrosis factor-α (TNFα) for 24h. Samples were also obtained in various stages of cell differentiation. Our results demonstrate that lipoprotein lipase (LPL), fatty acid synthase (FAS), ATP-binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-α and ß (PPARα, ß) are target genes of LXR in trout muscle. LXR agonists increased LXR expression, thereby indicating that this receptor is autoregulated. Unsaturated fatty acids downregulated LXR gene expression. This observation suggests a regulatory mechanism of these molecules on LXR-mediated fatty acid synthesis and uptake. TNFα did not modulate LXR gene transcription. Expression of the LXR gene was activated by insulin and GH. These results suggest that LXR may play a lipogenic role through insulin stimulation and a tendency to promote anabolic effects through GH on trout myocytes.


Assuntos
Ácidos Graxos/metabolismo , Hormônio do Crescimento/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oncorhynchus mykiss/metabolismo , Receptores Nucleares Órfãos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hidroxicolesteróis/farmacologia , Metabolismo dos Lipídeos/genética , Receptores X do Fígado , Desenvolvimento Muscular/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Receptores Nucleares Órfãos/agonistas
16.
Artigo em Inglês | MEDLINE | ID: mdl-21130894

RESUMO

The effects of fish oil (FO) substitution by 66% vegetable oils in a diet with already 75% vegetable protein (66VO) on adipose tissue lipid metabolism of gilthead sea bream were analysed after a 14-month feeding trial. In the last 3 months of the experiment, a FO diet was administrated to a 66VO group (group 66VO/FO) as a finishing diet. Hormone-sensitive lipase (HSL) activity was measured in adipose tissue and adipocyte size, and HSL, lipoprotein lipase and liver X receptor gene expression in isolated adipocytes, on which lipolysis and glucose uptake experiments were also performed. Lipolysis was measured after incubation with tumour necrosis factor-α (TNFα), linoleic acid, and two conjugated linoleic acid isomers. Glucose uptake was analysed after TNFα or insulin administration. Our results show that FO replacement increased lipolytic activity and adipocyte cell size. The higher proportion of large cells observed in the 66VO group could be involved in their observed lower response to fatty acid treatments and lower insulin sensitivity. The 66VO/FO group showed a moderate return to the FO conditions. Therefore, FO replacement can affect the morphology and metabolism of gilthead sea bream adipocytes which could potentially affect other organs such as the liver.


Assuntos
Adipócitos/metabolismo , Dourada/metabolismo , Adipócitos/citologia , Animais , Biomarcadores/metabolismo , Tamanho Celular , Dieta , Óleos de Peixe/administração & dosagem , Expressão Gênica , Glucose/metabolismo , Insulina/farmacologia , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Lipólise , Receptores X do Fígado , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Óleos de Plantas/administração & dosagem , Dourada/genética , Fator de Necrose Tumoral alfa/farmacologia
17.
Nat Commun ; 12(1): 2911, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006859

RESUMO

The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.


Assuntos
Fator Ativador de Células B/genética , Obesidade/genética , Transdução de Sinais/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Aumento de Peso/genética , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Fator Ativador de Células B/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 299(2): R562-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20484701

RESUMO

The effects of insulin and IGF-I on fatty acid (FA) and glucose metabolism were examined using oleic acid or glucose as tracers in differentiated rainbow trout (Oncorhynchus mykiss) myotubes. Insulin and IGF-I significantly reduced the production of CO(2) from oleic acid with respect to the control values. IGF-I also significantly reduced the production of acid-soluble products (ASP) and the concentration of FA in the medium, while cellular triacylglycerols (TAG) tended to increase. Only insulin produced a significant accumulation of glycogen inside the cells in glucose distribution experiments. Incubation with catecholamines did not affect oleic acid metabolism. Cells treated with rapamycin [a target of rapamycin (TOR) inhibitor] significantly increased the oxidation of oleic acid to CO(2) and ASP, while the accumulation of TAG diminished. Rosiglitazone (a peroxisome proliferator-activated receptor gamma agonist) and etomoxir (a CPT-1 inhibitor) produced a severe and significant reduction in the production of CO(2) and ASP. Rosiglitazone and etomoxir also produced a significant accumulation of FA outside and inside the cells, respectively. No significant effects of these drugs on glucose distribution were observed. These data indicate that insulin and IGF-I act as anabolic hormones in trout myotubes in both oleic acid and glucose metabolism, although glucose oxidation appears to be less sensitive than FA oxidation to insulin and IGF-I. The use of rapamycin, etomoxir, and rosiglitazone may help us to understand the mechanisms of regulation of lipid metabolism in fish.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ácido Oleico/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Dióxido de Carbono/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/metabolismo , Catecolaminas/metabolismo , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Glicogênio/metabolismo , Hipoglicemiantes/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Oxirredução , PPAR gama/agonistas , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Rosiglitazona , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Tiazolidinedionas/farmacologia , Triglicerídeos/metabolismo
19.
Fish Physiol Biochem ; 36(4): 1113-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20229024

RESUMO

The growth and nutrient utilization of blackspot seabream was studied under self-feeding or hand feeding for 90 days. Groups of 31 fish with an initial body weight of 24 g were fed either by hand two times a day (09:00, and 18:00 h) to apparent satiety or by self-feeders. The 90 days of the feeding trial included two periods: an adaptation period (30 days) required to achieve a constant number of feed demands per day and a subsequent experimental period (60 days). Final body weight and daily growth index were unaffected by the feeding regimes. However, the marked reduction in voluntary feed intake associated with similar nutrient gain on the self-fed group resulted in improved nutrient efficiency and in subsequent increased protein, lipid and energy retentions compared to fish hand-fed at set hours. The self-fed group displayed depressed malic (<62%) and fatty acid synthetase (<35%) activities as well as reduced triacylglycerol plasma levels, which correlated positively with feed intake and, at some extent, with fish lipid content. These results indicate the ability of blackspot seabream to adjust their lipid metabolism according to fish feeding rhythm. No effect of feeding method was however observed on glycolytic hepatic activities or on glucose, cholesterol and insulin plasma levels. Self-feeders led to similar growth (DGI, 1.4-1.5) but better efficiency (FCR, 1.0 vs. 1.5), and hence, can be regarded as a helpful tool to optimize feed distribution according to this species natural rhythm. The maximal number of demands occurring between 20:00 and 21:00 h (dusk/sunset), together with the fact that 61% of the feed demands took place during the night, reveals a preferential crepuscular/nocturnal feeding pattern of this species.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Aquicultura/métodos , Ingestão de Alimentos/fisiologia , Métodos de Alimentação/veterinária , Metabolismo dos Lipídeos , Dourada/crescimento & desenvolvimento , Análise de Variância , Animais , Glicemia/análise , Peso Corporal/fisiologia , Colesterol/sangue , Ácido Graxo Sintases/metabolismo , Insulina/sangue , Dourada/metabolismo , Triglicerídeos/sangue
20.
Cell Rep ; 33(1): 108223, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027655

RESUMO

Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Obesidade/fisiopatologia , Gordura Subcutânea/fisiopatologia , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa