Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Immunol ; 362: 104302, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33592540

RESUMO

MDSC are a heterogeneous population of immature myeloid cells that are released by biological stress such as tissue damage and inflammation. Conventionally, MDSC are known for their detrimental role in chronic inflammation and neoplastic conditions. However, their intrinsic functions in immunoregulation, wound healing, and angiogenesis are intended to protect from over-reactive immune responses, maintenance of immunotolerance, tissue repair, and homeostasis. Paradoxically, under certain conditions, MDSC can impair protective immune responses and exacerbate the disease. The transition from protective to harmful MDSC is most likely driven by environmental and epigenetic mechanisms induced by prolonged exposure to unresolved inflammatory triggers. Here, we review several examples of the dual impact of MDSC in conditions such as maternal-fetal tolerance, self-antigens immunotolerance, obesity-associated cancer, sepsis and trauma. Moreover, we also highlighted the evidence indicating that MDSC have a role in COVID-19 pathophysiology. Finally, we have summarized the evidence indicating epigenetic mechanisms associated with MDSC function.


Assuntos
Células Supressoras Mieloides/imunologia , Animais , COVID-19/imunologia , Epigênese Genética , Feminino , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Masculino , Neoplasias/imunologia , Obesidade/imunologia , Gravidez , Cicatrização/imunologia
2.
Mediators Inflamm ; 2019: 1656484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178661

RESUMO

Dendritic cells (DCs) are critical in asthma and many other immune diseases. We previously demonstrated a role for PARP-1 in asthma. Evidence on PARP-1 playing a role in Th2-associated DC function is not clear. In this study, we examined whether PARP-1 is critical for DC differentiation and function using bone marrow progenitors and their migration to the lung in an ovalbumin-based mouse model of asthma. Results show that changes in PARP-1 levels during GM-CSF-induced DC differentiation from bone marrow progenitors were cyclic and appear to be part of an array of changes that included STAT3/STAT5/STAT6/GRAIL/RAD51. Interestingly, PARP-1 gene deletion affected primarily STAT6 and γH2AX. PARP-1 inhibition significantly reduced the migration of DCs to the lungs of ovalbumin-challenged mice, which was associated with a concomitant reduction in lung levels of the adhesion molecule VCAM-1. The requirement of PARP-1 for VCAM-1 expression was confirmed using endothelial and lung smooth muscle cells. PARP-1 expression and activity were also required for VCAM-1 in differentiated DCs. An assessment of CD11b+/CD11c+/MHCIIhigh DCs in spleens and lymph nodes of OVA-sensitized mice revealed that PARP-1 inhibition genetically or by olaparib exerted little to no effect on DC differentiation, percentage of CD80+/CD86+/CD40+-expressing cells, or their capacity to promote proliferation of ovalbumin-primed (OTII) CD4+ T cells. These findings were corroborated using GM-CSF-induced differentiation of DCs from the bone marrow. Surprisingly, the PARP-1-/- DCs exhibited a higher intrinsic capacity to induce OTII CD4+ T cell proliferation in the absence of ovalbumin. Overall, our results show that PARP-1 plays little to no role in DC differentiation and function and that the protective effect of PARP-1 inhibition against asthma is associated with a prevention of DC migration to the lung through a reduction in VCAM-1 expression. Given the current use of PARP inhibitors (e.g., olaparib) in the clinic, the present results may be of interest for the relevant therapies.


Assuntos
Asma/metabolismo , Células Dendríticas/metabolismo , Pulmão/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Citometria de Fluxo , Camundongos , Camundongos Mutantes , Poli(ADP-Ribose) Polimerase-1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT6/metabolismo
3.
Methods Mol Biol ; 2422: 247-261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34859411

RESUMO

Flow cytometry allows the multiparameter analysis of heterogeneous cell populations and is an essential tool for detecting and characterizing different cell populations from peripheral blood and dissociated tissues. Myeloid-derived suppressor cells (MDSC) are a heterogeneous and plastic group of myeloid precursors with immune-suppressive capacity, which are a characteristic feature of chronic inflammation, such as cancer. The optimal measurement of MDSC levels could be used as a biomarker for clinicians for prognosis and/or management and for researchers to track and understand the role of MDSC in different pathological diseases.The criteria for defining MDSC include phenotypic surface markers, but ideally should also include the functional immunosuppressive effect on T cells, and, if possible, assessing the main biochemical and molecular features. Two major functional mechanisms to suppress T cell responses are the production of arginase-1 and reactive oxygen species (ROS) molecules. Here is presented a nine-parameter seven-color flow cytometric assay to identify and quantify MDSC from both peripheral blood mononuclear cells (PBMC) and dissociated tissue (e.g., tumor) by using fluorescence-tagged antibodies against surface markers. Also, the intracellular levels of arginase-1 and superoxide (O2-) content were performed to potentially distinguish their functional status.


Assuntos
Células Supressoras Mieloides , Arginase , Biomarcadores , Citometria de Fluxo , Humanos , Leucócitos Mononucleares , Neoplasias
4.
Front Microbiol ; 13: 859866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391733

RESUMO

Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.

5.
Front Cardiovasc Med ; 9: 756734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509276

RESUMO

Racist and discriminatory federal, state, and local housing policies significantly contribute to disparities in cardiovascular disease incidence and mortality for individuals that self-identify as Black or African American. Here we highlight three key housing policies - "redlining," zoning, and the construction of highways - which have wrought a powerful, sustained, and destructive impact on cardiovascular health in Black/African American communities. Redlining and highway construction policies have restricted access to quality health care, increased exposure to carcinogens such as PM2.5, and increased exposure to extreme heat. At the root of these policy decisions are longstanding, toxic societal factors including racism, segregation, and discrimination, which also serve to perpetuate racial inequities in cardiovascular health. Here, we review these societal and structural factors and then link them with biological processes such as telomere shortening, allostatic load, oxidative stress, and tissue inflammation. Lastly, we focus on the impact of inflammation on the immune system and the molecular mechanisms by which the inflamed immune microenvironment promotes the formation of atherosclerotic plaques. We propose that racial residential segregation and discrimination increases tissue inflammation and cytokine production, resulting in dysregulated immune signaling, which promotes plaque formation and cardiovascular disease. This framework has the power to link structural racism not only to cardiovascular disease, but also to cancer.

6.
EBioMedicine ; 77: 103910, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35248994

RESUMO

BACKGROUND: Low-density neutrophils (LDN) are increased in several inflammatory diseases and may also play a role in the low-grade chronic inflammation associated with obesity. Here we explored their role in obesity, determined their gene signatures, and assessed the effect of bariatric surgery. METHODS: We compared the number, function, and gene expression profiles of circulating LDN in morbidly obese patients (MOP, n=27; body mass index (BMI) > 40 Kg/m2) and normal-weight controls (NWC, n=20; BMI < 25 Kg/m2) in a case-control study. Additionally, in a prospective longitudinal study, we measured changes in the frequency of LDN after bariatric surgery (n=36) and tested for associations with metabolic and inflammatory parameters. FINDINGS: LDN and inflammatory markers were significantly increased in MOP compared to NWC. Transcriptome analysis showed increased neutrophil-related gene expression signatures associated with inflammation, neutrophil activation, and immunosuppressive function. However, LDN did not suppress T cells proliferation and produced low levels of reactive oxygen species (ROS). Circulating LDN in MOP significantly decreased after bariatric surgery in parallel with BMI, metabolic syndrome, and inflammatory markers. INTERPRETATION: Obesity increases LDN displaying an inflammatory gene signature. Our results suggest that LDN may represent a neutrophil subset associated with chronic inflammation, a feature of obesity that has been previously associated with the appearance and progression of co-morbidities. Furthermore, bariatric surgery, as an efficient therapy for severe obesity, reduces LDN in circulation and improves several components of the metabolic syndrome supporting its recognized anti-inflammatory and beneficial metabolic effects. FUNDING: This work was supported in part by grants from the National Institutes of Health (NIH; 5P30GM114732-02, P20CA233374 - A. Ochoa and L. Miele), Pennington Biomedical NORC (P30DK072476 - E. Ravussin & LSU-NO Stanley S. Scott Cancer Center and Louisiana Clinical and Translational Science Center (LACaTS; U54-GM104940 - J. Kirwan).


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Cirurgia Bariátrica/métodos , Estudos de Casos e Controles , Humanos , Estudos Longitudinais , Neutrófilos/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Estudos Prospectivos
7.
Obesity (Silver Spring) ; 29(6): 944-953, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33616242

RESUMO

Obesity is a risk factor for developing several cancers. The dysfunctional metabolism and chronic activation of inflammatory pathways in obesity create a milieu that supports tumor initiation, progression, and metastasis. Obesity-associated metabolic, endocrine, and inflammatory mediators, besides interacting with cells leading to a malignant transformation, also modify the intrinsic metabolic and functional characteristics of immune myeloid cells. Here, the evidence supporting the hypothesis that obesity metabolically primes and promotes the expansion of myeloid cells with immunosuppressive and pro-oncogenic properties is discussed. In consequence, the accumulation of these cells, such as myeloid-derived suppressor cells and some subtypes of adipose-tissue macrophages, creates a microenvironment conducive to tumor development. In this review, the role of lipids, insulin, and leptin, which are dysregulated in obesity, is emphasized, as well as dietary nutrients in metabolic reprogramming of these myeloid cells. Moreover, emerging evidence indicating that obesity enhances immunotherapy response and hypothesized mechanisms are summarized. Priorities in deeper exploration involving the mechanisms of cross talk between metabolic disorders and myeloid cells related to cancer risk in patients with obesity are highlighted.


Assuntos
Imunoterapia , Células Supressoras Mieloides/fisiologia , Neoplasias/etiologia , Obesidade/imunologia , Tecido Adiposo/metabolismo , Animais , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Imunoterapia/métodos , Mediadores da Inflamação/metabolismo , Leptina/metabolismo , Macrófagos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/prevenção & controle , Obesidade/complicações , Obesidade/metabolismo , Obesidade/terapia , Fatores de Risco , Microambiente Tumoral/imunologia
8.
medRxiv ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33791717

RESUMO

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19, that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of Granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1 + G-MDSC (Arg + G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg + G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.

9.
Front Immunol ; 12: 695972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34341659

RESUMO

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , Células Supressoras Mieloides/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/administração & dosagem , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/administração & dosagem , Arginina/sangue , Arginina/metabolismo , Infecções Assintomáticas , COVID-19/sangue , COVID-19/diagnóstico , Estudos de Casos e Controles , Quimioterapia Combinada/métodos , Inibidores Enzimáticos/administração & dosagem , Feminino , Granulócitos/metabolismo , Voluntários Saudáveis , Humanos , Interferon Tipo I/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Tratamento Farmacológico da COVID-19
10.
Antioxid Redox Signal ; 9(1): 131-41, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17115892

RESUMO

Male mice on a diet supplemented with thioproline (l-thiazolidine-4-carboxylic acid), a physiological metabolite of 5-hydroxytryptamine, at 2.0 g/kg of food from 28 weeks of age and for their entire life, showed a 23-29% increased median and maximal life span. These survival increases were associated with improved neurological functions. Compared to control mice, thioproline-supplemented mice had a 20% lower integral spontaneous food intake, and 10% lower body weight at 100 weeks of age. Body weight showed a statistically significant inverse relationship with survival and neurological performances. Thioproline-supplemented mice exhibited a 58-70% decrease of the age-dependent oxidative damage in brain and liver mitochondria at 52 weeks (old mice) and 78 weeks (senescent mice) of age, respectively. The age-associated decrease of brain mitochondrial enzyme activities, NADH-dehydrogenase, cytochrome c oxidase, and mitochondrial nitric oxide synthase (mtNOS), in old and senescent mice were markedly prevented (51-74%) by thioproline. In vitro, thioproline neither exhibited direct antioxidant activity nor had any effect on the electron transfer or mtNOS functional activities of brain and liver mitochondria. It is surmised that thioproline induces an anorexic effect associated with improved survival and neurological function through a decreased oxidative damage and regulation that may involve hypothalamic appetite centers.


Assuntos
Comportamento Animal , Ingestão de Alimentos , Neurônios/fisiologia , Tiazolidinas/farmacologia , Fatores Etários , Animais , Biomarcadores/análise , Peso Corporal , Suplementos Nutricionais , Feminino , Expectativa de Vida , Masculino , Aprendizagem em Labirinto , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/fisiologia , Oxirredução
11.
Front Biosci ; 12: 1190-9, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127372

RESUMO

The classic association between cancer and mitochondrial dysfunction is actually considered as a role of mitochondria in cellular signalling. It is understood that mitochondria, mitochondrial oxidative damage and NO and H2O2 diffusion are involved in the progression of human colorectal cancer. Mitochondria from human colorectal tumors and adjacent non-tumor colon tissues showed a markedly increased oxidative damage with increased contents of TBARS and protein carbonyls. Mitochondrial protein carbonyls was the most sensitive indicator. Oxidative stress and damage was also observed in adjacent non-tumor cells. Mitochondrial activities, as NADH-cytochrome c reductase and cytochrome oxidase, were observed decreased in tumor and in adjacent non-tumor tissue. Cu,Zn-SOD activity decreased by 42% in tumor tissue in the advanced stage as compared with the initial stage, whereas Mn-SOD activity did not change in tumor progression. An increased mtNOS activity (46%) was observed in tumor and non-tumor tissues in the advanced stage of cancer progression. A direct linear relationship between mtNOS and oxidative damage in tumor and non-tumor tissues supports the concept that mitochondrial NO and H2O2 diffuse from tumor to adjacent non tumor tissue signaling for cell death as the classic toxohormones.


Assuntos
Neoplasias Colorretais/enzimologia , Mitocôndrias/enzimologia , Estresse Oxidativo , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Óxido Nítrico Sintase/metabolismo , Superóxido Dismutase/metabolismo
12.
Free Radic Biol Med ; 46(12): 1574-80, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19298851

RESUMO

Frontal cortex samples from frozen human brains were used to assess tissue respiration; content of mitochondria; mitochondrial oxygen uptake; activity of respiratory complexes and of mitochondrial nitric oxide synthase (mtNOS); content of cytochromes a, b, and c; oxidative damage (protein carbonyls and TBARS); and expression of Mn-SOD in patients with Parkinson disease (PD) and with dementia with Lewy bodies (DLB) in comparison with those of normal healthy controls. Brain cortex and mitochondrial O(2) uptake and complex I activity were significantly lower in PD and DLB, whereas mtNOS activity, cytochrome content, expression of Mn-SOD, mitochondrial mass, and oxidative damage were significantly higher in the frontal cortex in PD and DLB. The decreases in tissue and mitochondrial O(2) uptake and in complex I activity are considered the consequences of mitochondrial oxidative damage. The increases in mtNOS activity and in mitochondrial mass are interpreted as an adaptive response of the frontal cortex that involves increased NO signaling for mitochondrial biogenesis. The adaptive response would partially compensate for mitochondrial dysfunction in these neurodegenerative diseases and would afford a human evolutionary response to shortage of ATP in the frontal cortex.


Assuntos
Lobo Frontal/metabolismo , Doença por Corpos de Lewy/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Consumo de Oxigênio/fisiologia , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Feminino , Lobo Frontal/patologia , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase/metabolismo , Doença de Parkinson/patologia
13.
Am J Physiol Regul Integr Comp Physiol ; 294(2): R501-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18077512

RESUMO

Hippocampus mitochondrial dysfunction with impaired electron transfer and increased oxidative damage was observed upon rat aging. Hippocampal mitochondria of aged (12 mo) and senescent (20 mo) rats showed, compared with young (4 mo) rats, marked decreases in the rate of state 3 respiration with NAD-dependent substrates (32-51%) and in the activities of mitochondrial complexes I (57-73%) and IV (33-54%). The activity of mitochondrial nitric oxide synthase was also decreased, 53-66%, with age. These losses in enzymatic activity were more marked in the hippocampus than in brain cortex or in whole brain. The histochemical assay of mitochondrial complex IV in the hippocampus showed decreased staining upon aging. Oxidative damage, determined as the mitochondrial content of thiobarbituric-acid reactive substances (TBARS) and protein carbonyls, increased in aged and senescent hippocampus (66-74% in TBARS and 48-96% in carbonyls). A significant statistical correlation was observed between mitochondrial oxidative damage and enzymatic activity. Mitochondrial dysfunction with shortage of energy supply is considered a likely cause of dysfunction in aged hippocampus.


Assuntos
Envelhecimento/metabolismo , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Doenças Mitocondriais/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipocampo/patologia , Masculino , Mitocôndrias/enzimologia , NAD/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Tamanho do Órgão , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 289(5): R1392-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16020519

RESUMO

Male mice receiving vitamin E (5.0 g alpha-tocopherol acetate/kg of food) from 28 wk of age showed a 40% increased median life span, from 61 +/- 4 wk to 85 +/- 4 wk, and 17% increased maximal life span, whereas female mice equally supplemented exhibited only 14% increased median life span. The alpha-tocopherol content of brain and liver was 2.5-times and 7-times increased in male mice, respectively. Vitamin E-supplemented male mice showed a better performance in the tight-rope (neuromuscular function) and the T-maze (exploratory activity) tests with improvements of 9-24% at 52 wk and of 28-45% at 78 wk. The rates of electron transfer in brain mitochondria, determined as state 3 oxygen uptake and as NADH-cytochrome c reductase and cytochrome oxidase activities, were 16-25% and 35-38% diminished at 52-78 wk. These losses of mitochondrial function were ameliorated by vitamin E supplementation by 37-56% and by 60-66% at the two time points considered. The activities of mitochondrial nitric oxide synthase and Mn-SOD decreased 28-67% upon aging and these effects were partially (41-68%) prevented by vitamin E treatment. Liver mitochondrial activities showed similar effects of aging and of vitamin E supplementation, although less marked. Brain mitochondrial enzymatic activities correlated negatively with the mitochondrial content of protein and lipid oxidation products (r2 = 0.58-0.99, P < 0.01), and the rates of respiration and of complex I and IV activities correlated positively (r2 = 0.74-0.80, P < 0.01) with success in the behavioral tests and with maximal life span.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Mitocôndrias/enzimologia , alfa-Tocoferol/metabolismo , Animais , Antioxidantes/análise , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Comportamento Exploratório , Feminino , Fígado/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos , Atividade Motora , NADH Desidrogenase/metabolismo , Óxido Nítrico Sintase/metabolismo , Consumo de Oxigênio , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , alfa-Tocoferol/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa