RESUMO
We aim to investigate the role of A2A receptor in peritonitis-related sepsis by injection of a fecal solution (FS) as a model of polymicrobial infection. C57/black J6 wild-type (WT) and A2A-deficient mice (A2AKO) were exposed to sepsis induced by intraperitoneal injection of a FS (FS-induced peritonitis) or instead was injected with saline buffer (Sham). Survival rate and sepsis score were measured up to 48 h. The presence of bacteria in tissue homogenates was analyzed. Telemetry and speckle laser Doppler were used for systemic blood pressure and peripheral blood perfusion analysis, respectively. Histological analysis and identification of active caspase 3 were performed in selected organs, including the liver. The survival rate of A2AKO mice exposed to FS-induced peritonitis was significantly higher, and the sepsis score was lower than their respective WT counterpart. Injection of FS increases (50 to 150 folds) the number of colonies forming units in the liver, kidney, blood, and lung in WT mice, while these effects were significantly attenuated in A2AKO mice exposed to FS-induced peritonitis. A significant reduction in both systolic and diastolic blood pressure, as well as in the peripheral perfusion was observed in WT and A2AKO mice exposed to FS-induced peritonitis. Although, these last effects were significantly attenuated in A2AKO mice. Histological analysis showed a large perivascular infiltration of polymorphonuclear in the liver of WT and A2AKO mice exposed to FS-induced peritonitis, but again, this effect was attenuated in A2AKO mice. Finally, high expression of active caspase 3 was found only in the liver of WT mice exposed to FS-induced peritonitis. The absence of the A2A receptor increases the survival rate in mice exposed to polymicrobial sepsis. This outcome was associated with both hemodynamic compensation and enhanced anti-bacterial response.
Assuntos
Peritonite/metabolismo , Receptor A2A de Adenosina/metabolismo , Sepse/metabolismo , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Peritonite/genética , Peritonite/microbiologia , Peritonite/mortalidade , Receptor A2A de Adenosina/genética , Sepse/genética , Sepse/mortalidade , Taxa de SobrevidaRESUMO
BACKGROUND: Children from pregnancies affected by preeclampsia have an increased risk of cognitive and behavioral alterations via unknown pathophysiology. We tested the hypothesis that preeclampsia generated reduced brain cortex angiogenesis in the offspring. METHODS: The preeclampsia-like syndrome (PELS) mouse model was generated by administering the nitric oxide inhibitor NG-nitroarginine methyl ester hydrochloride. Confirmatory experiments were done using 2 additional PELS models. While in vitro analysis used mice and human brain endothelial cells exposed to serum of postnatal day 5 pups or umbilical plasma from preeclamptic pregnancies, respectively. RESULTS: We report significant reduction in the area occupied by blood vessels in the motor and somatosensory brain cortex of offspring (postnatal day 5) from PELS compared with uncomplicated control offspring. These data were confirmed using 2 additional PELS models. Furthermore, circulating levels of critical proangiogenic factors, VEGF (vascular endothelial growth factor), and PlGF (placental growth factor) were lower in postnatal day 5 PELS. Also we found lower VEGF receptor 2 (KDR [kinase insert domain-containing receptor]) levels in mice and human endothelial cells exposed to the serum of postnatal day 5 PELS or fetal plasma of preeclamptic pregnancies, respectively. These changes were associated with lower in vitro angiogenic capacity, diminished cell migration, larger F-actin filaments, lower number of filopodia, and lower protein levels of F-actin polymerization regulators in brain endothelial cells exposed to serum or fetal plasma of offspring from preeclampsia. CONCLUSIONS: Offspring from preeclampsia exhibited diminished brain cortex angiogenesis, associated with lower circulating VEGF/PlGF/KDR protein levels, impaired brain endothelial migration, and dysfunctional assembly of F-actin filaments. These alterations may predispose to structural and functional alterations in long-term brain development.