Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(16): 6318-6329, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31746535

RESUMO

Radical chain reactions are commonly initiated through the thermal or photochemical activation of purpose-built initiators, through photochemical activation of substrates, or through well-designed redox processes. Where radicals come from in the absence of these initiation strategies is much less obvious and are often assumed to derive from unknown impurities. In this situation, molecule-induced radical formation (MIRF) reactions should be considered as well-defined alternative initiation modes. In the most general definition of MIRF reactions, two closed-shell molecules react to give a radical pair or biradical. The exact nature of this transformation depends on the σ- or π-bonds involved in the MIRF process, and this Minireview specifically focuses on reactions that transform two σ-bonds into two radicals and a closed-shell product molecule.

2.
Chemistry ; 25(36): 8604-8611, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31058373

RESUMO

The reaction profiles for the uni- and bimolecular decomposition of benzyl hydroperoxide have been studied in the context of initiation reactions for the (aut)oxidation of hydrocarbons. The unimolecular dissociation of benzyl hydroperoxide was found to proceed through the formation of a hydrogen-bonded radical-pair minimum located +181 kJ mol-1 above the hydroperoxide substrate and around 15 kJ mol-1 below the separated radical products. The reaction of toluene with benzyl hydroperoxide proceeds such that O-O bond homolysis is coupled with a C-H bond abstraction event in a single kinetic step. The enthalpic barrier of this molecule-induced radical formation (MIRF) process is significantly lower than that of the unimolecular O-O bond cleavage. The same type of reaction is also possible in the self-reaction between two benzyl hydroperoxide molecules forming benzyloxyl and hydroxyl radical pairs along with benzaldehyde and water as co-products. In the product complexes formed in these MIRF reactions, both radicals connect to a centrally placed water molecule through hydrogen-bonding interactions.

3.
J Comput Chem ; 38(25): 2186-2192, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28696539

RESUMO

OO bond homolysis in hydrogen peroxide (H2 O2 ) has been studied using theoretical methods of four conceptually different types: hybrid DFT (B3LYP, M06-2X), double-hybrid DFT (B2-PLYP), coupled-cluster (CCSD(T)), and multiconfigurational (CASPT2). In addition, the effects of basis set size have also been analyzed. For all of these methods, the OO bond homolysis in hydrogen peroxide has been found to proceed through hydrogen bonded radical pair complexes. Reaction barriers for collapse of the radical pairs to hydrogen peroxide are minute, leading to an overall very flat potential energy surface. However, hydrogen bonding energies in the radical pair complex expressed as the energy difference to two separate hydroxyl radicals are sizeable and exceed 10 kJ/mol for all theoretical methods considered in this study. © 2017 Wiley Periodicals, Inc.

4.
Chemistry ; 21(40): 14060-7, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26376332

RESUMO

For the (aut)oxidation of toluene to benzyl hydroperoxide, benzyl alcohol, benzaldehyde, and benzoic acid, the thermochemical profiles for various radical-generating reactions have been compared. A key intermediate in all of these reactions is benzyl hydroperoxide, the heat of formation of which has been estimated by using results from CBS-QB3, G4, and G3B3 calculations. Homolytic O-O bond cleavage in this hydroperoxide is strongly endothermic and thus unlikely to contribute significantly to initiation processes. In terms of reaction enthalpies the most favorable initiation process involves bimolecular reaction of benzyl hydroperoxide to yield hydroxy and benzyloxy radicals along with water and benzaldehyde. The reaction enthalpy and free energy of this process is significantly more favorable than those for the unimolecular dissociation of known radical initiators, such as dibenzoylperoxide or dibenzylhyponitrite.

5.
Environ Sci Pollut Res Int ; 30(17): 50209-50224, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36790714

RESUMO

Sulfoxaflor is one of the widely used insecticides in agricultural lands to protect crops from insects. Due to its persistent nature, sulfoxaflor is identified as an environmental pollutant. In the present work, the mechanism and kinetics of sulfoxaflor degradation initiated by OH radical addition reaction are studied by using quantum chemical calculations. In the gas phase, the OH addition reaction at the C4 position of sulfoxaflor is found to be the favorable reaction pathway. The rate constant for the initial OH-addition reaction has been studied using canonical variational transition state theory (CVT) over the temperature range of 200-350 K. The initially formed sulfoxaflor-OH adduct intermediate transforms by reacting with O2, H2O, HO2, and NOx (x = 1-2) radicals. The excited-state calculation performed for the stationary points shows that the intermediates formed along the reaction pathway are easily photolyzed in normal sunlight. The toxicity assessment result shows that sulfoxaflor and few of its degradation products are harmful and toxic. The acidification potential of sulfoxaflor was found to be one, which shows its contribution to acid rain. This study gives an in-depth understanding of the mechanism, kinetics, and risk assessment of sulfoxaflor in the environment and aquatic system.


Assuntos
Radical Hidroxila , Compostos de Enxofre , Cinética , Física
6.
Environ Sci Pollut Res Int ; 27(11): 12080-12095, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31983006

RESUMO

Diuron is a phenyl urea herbicide used to control weeds in agricultural lands. The degradation of diuron in the atmosphere takes place dominantly via reaction with OH radicals. In this work, the OH addition reaction of diuron has been studied by using density functional theory methods M06-2X, ωB97X-D and MPWB1K with 6-31G(d,p) basis set. The calculated thermochemical parameters show that OH addition reaction occurs favourably at C2 position of diuron. The rate constant is calculated for the favourable initial reaction pathway by using canonical variational transition state theory with small curvature tunnelling (SCT) correction over the temperature range of 200-1000 K. The reaction of initially formed diuron-OH adduct intermediate with O2 leads to the formation of peroxy radical intermediate. The reaction of peroxy radical intermediate with HO2 and NOx (x = 1, 2) radicals is studied in detail. The results obtained from time-dependent density functional theory (TDDFT) calculations show that the intermediates and products formed from oxidation of diuron can be easily photolyzed in the sunlight. This study provides thermodynamical and kinetic data for the atmospheric oxidation of diuron by OH radical addition reaction and demonstrates the atmospheric chemistry of diuron and its derivatives.


Assuntos
Diurona , Radical Hidroxila , Atmosfera , Cinética , Oxirredução
7.
Environ Sci Pollut Res Int ; 26(4): 3357-3367, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511221

RESUMO

The mechanism and kinetics for the reaction of dimethyl carbonate (DMC) with OH radical have been studied by using quantum chemical methods. Four reaction pathways were identified for the initial reaction. In the first two pathways, hydrogen atom abstraction is taking place and alkyl radical intermediate is formed with the energy barrier of 6.4 and 7.9 kcal/mol. In the third pathway, OH addition reaction to the carbonyl carbon (C2) atom of DMC and intermediate, I2, is formed with an energy barrier of 11.9 kcal/mol. In the fourth pathway, along with CH3O●, methyl hydrogen carbonate is formed. For this C-O bond breaking and O-H addition reaction, the energy barrier is 27 kcal/mol. The calculated enthalpy and Gibbs energy values show that the studied initial reactions are exothermic and exoergic except the OH addition reaction. For the initial reactions, the rate constants were calculated by using canonical variational transition state theory (CVT) with small curvature tunneling (SCT) correction over the temperature range of 278-1200 K. At 298 K, the calculated rate coefficient for the in-plane and out-of-plane hydrogen atom abstraction reaction pathway is 2.30 × 10-13 and 0.02 × 10-13 cm3 molecule-1 s-1. Further, the reaction between alkyl radical intermediate formed from the first pathway and O2 is studied. The reaction of alkyl peroxy radical intermediate with atmospheric oxidants, HO2, NO, and NO2 is also studied. It was found that the formic (methyl carbonic) anhydride is the end product formed from the atmospheric oxidation and secondary reactions of DMC.


Assuntos
Atmosfera/química , Formiatos/química , Radical Hidroxila/química , Poluentes Atmosféricos/química , Carbono/química , Hidrogênio/química , Cinética , Oxirredução , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa