Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(39): 26417-26428, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522306

RESUMO

In this work, we focus on the understanding of the driving force behind the S1-T1 excited-state energy inversion (which would thus violate Hund's rule, making the S1 state lower in energy than the T1 state) of two non-benzenoid non-alternant hydrocarbons, composed of odd-membered rings. The molecules considered here have identical chemical composition but different atomic configuration in space. The delicate interplay between structural and electronic factors that might induce inversion and its energy extension, only by a few meV, is systematically investigated here by state-of-the-art calculations. Qualitative and quantitative accurate predictions are obtained employing post-HF methods, thanks to the balanced and careful inclusion of electron correlation effects. The obtained results might guide and rationalize new searches for molecules violating Hund's rule, concomitantly demonstrating the importance of key contributions from the theoretical method of choice.

2.
Phys Chem Chem Phys ; 25(16): 11697-11706, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057462

RESUMO

We theoretically study and characterize a set of rhombus-shaped nanographenes of increasing size, or n-rhombenes, where n = 2-6, displaying zigzag edges leading to an enhancement of the (poly)radicaloid nature and the appearance of intrinsic magnetism as a function of n. Due to that system-dependent radicaloid nature, we employ spin-flip methods able to capture the challenging physics of the problem, thus providing accurate energy differences between high- and low-spin solutions. The theoretical predictions agree with the experimentally available magnetic exchange coupling for the recently synthesized 5-rhombene, as well as with the size at which the transition from a closed-shell to an open-shell ground-state solution occurs. We also investigate if standard DFT methods are able to reproduce the trend disclosed by spin-flip methods and if the results are highly dependent on the functional choice and/or the intrinsic spin contamination.

3.
J Chem Phys ; 158(4): 044105, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725511

RESUMO

A family of non-empirical double-hybrid (DH) density functionals, such as Perdew-Burke-Ernzerhof (PBE)0-DH, PBE-QIDH, and their range-separated exchange (RSX) versions RSX-0DH and RSX-QIDH, all using Perdew-Burke-Ernzerhof(PBE) exchange and correlationfunctionals, is applied here to calculate the excitation energies for increasingly longer linear and cyclic acenes as part of their intense benchmarking for excited states of all types. The energies for the two lowest-lying singlet 1La and 1Lb states of linear oligoacenes as well as the triplet 3La and 3Lb states, are calculated and compared with experimental results. These functionals clearly outperform the results obtained from hybrid functionals and favorably compare with other double-hybrid expressions also tested here, such as B2-PLYP, B2GP-PLYP, ωB2-PLYP, and ωB2GP-PLYP. The study is complemented by the computation of adiabatic S0-T1 singlet-triplet energy difference for linear acenes as well as the extension of the study to strained cyclic oligomers, showing how the family of non-empirical expressions robustly leads to competitive results.

4.
Phys Chem Chem Phys ; 21(5): 2547-2557, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30656301

RESUMO

We systematically investigate the relationships between structural and electronic effects of finite size zigzag or armchair carbon nanotubes of various diameters and lengths, starting from a molecular template of varying shape and diameter, i.e. cyclic oligoacene or oligophenacene molecules, and disclosing how adding layers and/or end-caps (i.e. hemifullerenes) can modify their (poly)radicaloid nature. We mostly used tight-binding and finite-temperature density-based methods, the former providing a simple but intuitive picture about their electronic structure, and the latter dealing effectively with strong correlation effects by relying on a fractional occupation number weighted electron density (ρFOD), with additional RAS-SF calculations backing up the latter results. We also explore how minor structural modifications of nanotube end-caps might influence the results, showing that topology, together with the chemical nature of the systems, is pivotal for the understanding of the electronic properties of these and other related systems.

5.
Phys Chem Chem Phys ; 20(10): 7112-7124, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479605

RESUMO

We discuss the nature of electron-correlation effects in carbon nanorings and nanobelts using an analysis tool known as fractional occupation number weighted electron density (ρFOD) and the RAS-SF method, revealing for the first time significant differences in static correlation effects depending on how the rings (i.e. chemical units) are fused and/or connected until closing the loop. We choose to study in detail linear and cyclic oligoacene molecules of increasing size, and relate the emerging differences with the difficulties for the synthesis of the latter due to their radicaloid character. We finally explore how minor structural modifications of the cyclic forms can alter these results, showing the potential use of these systems as molecular templates for the growth of well-shaped carbon nanotubes as well as the usefulness of theoretical tools for molecular design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa