Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 184(2): 534-544.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33373586

RESUMO

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its ß-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Túbulos Renais Proximais/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Polimorfismo Genético , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Domínios Proteicos , Sistema Renina-Angiotensina
2.
Cell ; 157(7): 1565-76, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949969

RESUMO

Mycobacterium ulcerans, the etiological agent of Buruli ulcer, causes extensive skin lesions, which despite their severity are not accompanied by pain. It was previously thought that this remarkable analgesia is ensured by direct nerve cell destruction. We demonstrate here that M. ulcerans-induced hypoesthesia is instead achieved through a specific neurological pathway triggered by the secreted mycobacterial polyketide mycolactone. We decipher this pathway at the molecular level, showing that mycolactone elicits signaling through type 2 angiotensin II receptors (AT2Rs), leading to potassium-dependent hyperpolarization of neurons. We further validate the physiological relevance of this mechanism with in vivo studies of pain sensitivity in mice infected with M. ulcerans, following the disruption of the identified pathway. Our findings shed new light on molecular mechanisms evolved by natural systems for the induction of very effective analgesia, opening up the prospect of new families of analgesics derived from such systems.


Assuntos
Angiotensinas/metabolismo , Úlcera de Buruli/patologia , Macrolídeos/isolamento & purificação , Mycobacterium ulcerans , Analgésicos/isolamento & purificação , Animais , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Modelos Animais de Doenças , Edema/microbiologia , Humanos , Hipestesia/induzido quimicamente , Macrolídeos/química , Macrolídeos/metabolismo , Camundongos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 113(15): 4194-9, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035963

RESUMO

Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Linhagem Celular , Dimerização , Humanos , Concentração de Íons de Hidrogênio , Canais de Potássio de Domínios Poros em Tandem/química
4.
Proc Natl Acad Sci U S A ; 111(37): 13547-52, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197053

RESUMO

Membrane lipids serve as second messengers and docking sites for proteins and play central roles in cell signaling. A major question about lipid signaling is whether diffusible lipids can selectively target specific proteins. One family of lipid-regulated membrane proteins is the TWIK-related K channel (TREK) subfamily of K2P channels: TREK1, TREK2, and TWIK-related arachdonic acid stimulated K(+) channel (TRAAK). We investigated the regulation of TREK channels by phosphatidic acid (PA), which is generated by phospholipase D (PLD) via hydrolysis of phosphatidylcholine. Even though all three of the channels are sensitive to PA, we found that only TREK1 and TREK2 are potentiated by PLD2 and that none of these channels is modulated by PLD1, indicating surprising selectivity. We found that PLD2, but not PLD1, directly binds to the C terminus of TREK1 and TREK2, but not to TRAAK. The results have led to a model for selective lipid regulation by localization of phospholipid enzymes to specific effector proteins. Finally, we show that regulation of TREK channels by PLD2 occurs natively in hippocampal neurons.


Assuntos
Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Álcoois/farmacologia , Aminoácidos/metabolismo , Biocatálise/efeitos dos fármacos , Domperidona/análogos & derivados , Domperidona/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Hipocampo/citologia , Humanos , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfolipase D/antagonistas & inibidores , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Ligação Proteica/efeitos dos fármacos
5.
J Neurosci ; 33(28): 11643-54, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843532

RESUMO

CXCR4, a receptor for the chemokine CXCL12 (stromal-cell derived factor-1α), is a G-protein-coupled receptor (GPCR), expressed in the immune and CNS and integrally involved in various neurological disorders. The GABAB receptor is also a GPCR that mediates metabotropic action of the inhibitory neurotransmitter GABA and is located on neurons and immune cells as well. Using diverse approaches, we report novel interaction between GABAB receptor agents and CXCR4 and demonstrate allosteric binding of these agents to CXCR4. First, both GABAB antagonists and agonists block CXCL12-elicited chemotaxis in human breast cancer cells. Second, a GABAB antagonist blocks the potentiation by CXCL12 of high-threshold Ca(2+) channels in rat neurons. Third, electrophysiology in Xenopus oocytes and human embryonic kidney cell line 293 cells in which we coexpressed rat CXCR4 and the G-protein inward rectifier K(+) (GIRK) channel showed that GABAB antagonist and agonist modified CXCL12-evoked activation of GIRK channels. To investigate whether GABAB ligands bind to CXCR4, we expressed this receptor in heterologous systems lacking GABAB receptors and performed competition binding experiments. Our fluorescent resonance energy transfer experiments suggest that GABAB ligands do not bind CXCR4 at the CXCL12 binding pocket suggesting allosteric modulation, in accordance with our electrophysiology experiments. Finally, using backscattering interferometry and lipoparticles containing only the CXCR4 receptor, we quantified the binding affinity for the GABAB ligands, confirming a direct interaction with the CXCR4 receptor. The effect of GABAergic agents on CXCR4 suggests new therapeutic potentials for neurological and immune diseases.


Assuntos
Baclofeno/farmacologia , Quimiocina CXCL12/metabolismo , Agonistas dos Receptores de GABA-B/metabolismo , Receptores CXCR4/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Baclofeno/metabolismo , Linhagem Celular Tumoral , Feminino , GABAérgicos/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Células HEK293 , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Wistar , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 108(6): 2605-10, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262820

RESUMO

TREK channels produce background currents that regulate cell excitability. These channels are sensitive to a wide variety of stimuli including polyunsaturated fatty acids (PUFAs), phospholipids, mechanical stretch, and intracellular acidification. They are inhibited by neurotransmitters, hormones, and pharmacological agents such as the antidepressant fluoxetine. TREK1 knockout mice have impaired PUFA-mediated neuroprotection to ischemia, reduced sensitivity to volatile anesthetics, altered perception of pain, and a depression-resistant phenotype. Here, we investigate TREK1 regulation by Gq-coupled receptors (GqPCR) and phospholipids. Several reports indicate that the C-terminal domain of TREK1 is a key regulatory domain. We developed a fluorescent-based technique that monitors the plasma membrane association of the C terminus of TREK1 in real time. Our fluorescence and functional experiments link the modulation of TREK1 channel function by internal pH, phospholipid, and GqPCRs to TREK1-C-terminal domain association to the plasma membrane, where increased association results in greater activity. In keeping with this relation, inhibition of TREK1 current by fluoxetine is found to be accompanied by dissociation of the C-terminal domain from the membrane.


Assuntos
Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Membrana Celular/genética , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Fluoxetina/farmacologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Isquemia/genética , Isquemia/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Oócitos , Fosfolipídeos/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Estrutura Terciária de Proteína , Xenopus laevis
7.
J Med Chem ; 67(12): 10152-10167, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842406

RESUMO

The prevailing but not undisputed amyloid cascade hypothesis places the ß-site of APP cleaving enzyme 1 (BACE1) center stage in Alzheimer's Disease pathogenesis. Here, we investigated functional properties of BACE1 with novel tag- and antibody-free labeling tools, which are conjugates of the BACE1-inhibitor IV (also referred to as C3) linked to different impermeable Alexa Fluor dyes. We show that these fluorescent small molecules bind specifically to BACE1, with a 1:1 labeling stoichiometry at their orthosteric site. This is a crucial property especially for single-molecule and super-resolution microscopy approaches, allowing characterization of the dyes' labeling capabilities in overexpressing cell systems and in native neuronal tissue. With multiple colors at hand, we evaluated BACE1-multimerization by Förster resonance energy transfer (FRET) acceptor-photobleaching and single-particle imaging of native BACE1. In summary, our novel fluorescent inhibitors, termed Alexa-C3, offer unprecedented insights into protein-protein interactions and diffusion behavior of BACE1 down to the single molecule level.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Corantes Fluorescentes/química , Animais , Células HEK293 , Imagem Individual de Molécula/métodos
8.
Nat Commun ; 15(1): 65, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167346

RESUMO

Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.


Assuntos
Cálcio , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , Luz , Membrana Celular/metabolismo , Fitoplâncton/metabolismo , Rodopsinas Microbianas/metabolismo
9.
Nat Commun ; 14(1): 1160, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859433

RESUMO

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K+ channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels. In the dark or ambient light, LAKI is inactive. However, alternating transdermal illumination at 365 nm and 480 nm reversibly blocks and unblocks TREK/TRESK current in nociceptors, enabling rapid control of pain and nociception in intact and freely moving mice and nematode. These results demonstrate, in vivo, the subcellular localization of TREK/TRESK at the nociceptor free nerve endings in which their acute inhibition is sufficient to induce pain, showing LAKI potential as a valuable tool for TREK/TRESK channel studies. More importantly, LAKI gives the ability to reversibly remote-control pain in a non-invasive and physiological manner in naive animals, which has utility in basic and translational pain research but also in in vivo analgesic drug screening and validation, without the need of genetic manipulations or viral infection.


Assuntos
Dor , Canais de Potássio de Domínios Poros em Tandem , Animais , Camundongos , Avaliação Pré-Clínica de Medicamentos , Nociceptores , Nematoides , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
10.
Proc Natl Acad Sci U S A ; 106(34): 14628-33, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19667202

RESUMO

Mechanosensitive K(+) channels TREK1 and TREK2 form a subclass of two P-domain K(+) channels. They are potently activated by polyunsaturated fatty acids and are involved in neuroprotection, anesthesia, and pain perception. Here, we show that acidification of the extracellular medium strongly inhibits TREK1 with an apparent pK near to 7.4 corresponding to the physiological pH. The all-or-none effect of pH variation is steep and is observed within one pH unit. TREK2 is not inhibited but activated by acidification within the same range of pH, despite its close homology with TREK1. A single conserved residue, H126 in TREK1 and H151 in TREK2, is involved in proton sensing. This histidine is located in the M1P1 extracellular loop preceding the first P domain. The differential effect of acidification, that is, activation for TREK2 and inhibition for TREK1, involves other residues located in the P2M4 loop, linking the second P domain and the fourth membrane-spanning segment. Structural modeling of TREK1 and TREK2 and site-directed mutagenesis strongly suggest that attraction or repulsion between the protonated side chain of histidine and closely located negatively or positively charged residues in P2M4 control outer gating of these channels. The differential sensitivity of TREK1 and TREK2 to external pH variations discriminates between these two K(+) channels that otherwise share the same regulations by physical and chemical stimuli, and by hormones and neurotransmitters.


Assuntos
Histidina/fisiologia , Mutação , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Animais , Estimulação Elétrica , Espaço Extracelular/química , Feminino , Histidina/química , Histidina/genética , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Estrutura Terciária de Proteína , Prótons , Xenopus
11.
Curr Opin Pharmacol ; 63: 102178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065384

RESUMO

Photopharmacology allows for the remote control of ion channels and receptors by the application of light-sensitive compounds. Upon irradiation with light these molecules change their configuration, enabling channel modulation with both spatial and temporal resolution. For the control of potassium channel physiology mainly two approaches have evolved. Photoswitchable tethered ligands (PTLs) and freely diffusible photochromic ligands (PCLs), targeting K+ channels, serve to gain insights in neuronal functions of the brain and the heart, whereby the molecules have been refined in the past years with special focus on improving switching characteristics in terms of red-shifted wavelengths and temporal resolution. In this review we provide an overview about the application of these tools in studying potassium channels and neuronal circuit, highlighting recent developments towards future implementations.


Assuntos
Neurônios , Canais de Potássio , Ligantes
12.
Neurosci Lett ; 773: 136494, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35114333

RESUMO

The ability to sense pain signals is closely linked to the activity of ion channels expressed in nociceptors, the first neurons that transduce noxious stimuli into pain. Among these ion channels, TREK1, TREK2 and TRAAK from the TREK subfamily of the Two-Pore-Domain potassium (K2P) channels, are hyperpolarizing channels that render neurons hypoexcitable. They are regulated by diverse physical and chemical stimuli as well as neurotransmitters through G-protein coupled receptor activation. Here, we review the molecular mechanisms underlying these regulations and their functional relevance in pain and migraine induction.


Assuntos
Transtornos de Enxaqueca , Canais de Potássio de Domínios Poros em Tandem , Humanos , Dor , Percepção da Dor , Potássio
13.
J Biol Chem ; 285(7): 4798-805, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19959478

RESUMO

Tandem of P domains in a weak inwardly rectifying K(+) channel 1 (TWIK1) is a K(+) channel that produces unusually low levels of current. Replacement of lysine 274 by a glutamic acid (K274E) is associated with stronger currents. This mutation would prevent conjugation of a small ubiquitin modifier peptide to Lys-274, a mechanism proposed to be responsible for channel silencing. However, we found no biochemical evidence of TWIK1 sumoylation, and we showed that the conservative change K274R did not increase current, suggesting that K274E modifies TWIK1 gating through a charge effect. Now we rule out an eventual effect of K274E on TWIK1 trafficking, and we provide convincing evidence that TWIK1 silencing results from its rapid retrieval from the cell surface. TWIK1 is internalized via a dynamin-dependent mechanism and addressed to the recycling endosomal compartment. Mutation of a diisoleucine repeat located in its cytoplasmic C terminus (I293A,I294A) stabilizes TWIK1 at the plasma membrane, resulting in robust currents. The effects of I293A,I294A on channel trafficking and of K274E on channel activity are cumulative, promoting even more currents. Activation of serotoninergic receptor 5-HT(1)R or adrenoreceptor alpha2A-AR stimulates TWIK1 but has no effect on TWIK1I293A,I294A, suggesting that G(i) protein activation is a physiological signal for increasing the number of active channels at the plasma membrane.


Assuntos
Endocitose/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transporte Proteico/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cães , Eletrofisiologia , Endocitose/genética , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , Mutação , Fosforilação/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/genética , Transporte Proteico/genética , Receptores 5-HT1 de Serotonina/metabolismo , Serotonina/farmacologia
14.
Neuroscientist ; 27(3): 268-284, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32715910

RESUMO

Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Humanos , Dor , Canais de Potássio
15.
iScience ; 24(9): 102961, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34458705

RESUMO

Activation and sensitization of trigeminal ganglia (TG) sensory neurons, leading to the release of pro-inflammatory peptides such as calcitonin gene-related peptide (CGRP), are likely a key component in migraine-related headache induction. Reducing TG neuron excitability represents therefore an attractive alternative strategy to relieve migraine pain. Here by using pharmacology and genetic invalidation ex vivo and in vivo, we demonstrate that activating TREK1 and TREK2 two-pore-domain potassium (K2P) channels inhibits TG neuronal firing sufficiently to fully reverse the migraine-like phenotype induced by NO-donors in rodents. Finally, targeting TREK is as efficient as treatment with CGRP antagonists, which represents one of the most effective migraine therapies. Altogether, our results demonstrate that inhibiting TG excitability by pharmacological activation of TREK channels should be considered as an alternative to the current migraine treatment.

16.
Cell Chem Biol ; 28(11): 1648-1663.e16, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33735619

RESUMO

Despite the power of photopharmacology for interrogating signaling proteins, many photopharmacological systems are limited by their efficiency, speed, or spectral properties. Here, we screen a library of azobenzene photoswitches and identify a urea-substituted "azobenzene-400" core that offers bistable switching between cis and trans with improved kinetics, light sensitivity, and a red-shift. We then focus on the metabotropic glutamate receptors (mGluRs), neuromodulatory receptors that are major pharmacological targets. Synthesis of "BGAG12,400," a photoswitchable orthogonal, remotely tethered ligand (PORTL), enables highly efficient, rapid optical agonism following conjugation to SNAP-tagged mGluR2 and permits robust optical control of mGluR1 and mGluR5 signaling. We then produce fluorophore-conjugated branched PORTLs to enable dual imaging and manipulation of mGluRs and highlight their power in ex vivo slice and in vivo behavioral experiments in the mouse prefrontal cortex. Finally, we demonstrate the generalizability of our strategy by developing an improved soluble, photoswitchable pore blocker for potassium channels.


Assuntos
Compostos Azo/farmacologia , Canais de Potássio/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Animais , Compostos Azo/química , Células Cultivadas , Feminino , Humanos , Ligantes , Camundongos , Processos Fotoquímicos , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
J Neurosci ; 28(34): 8545-52, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18716213

RESUMO

Twik-related K+ (TREK) channels produce background currents that regulate cell excitability. In vivo, TREK-1 is involved in neuronal processes including neuroprotection against ischemia, general anesthesia, pain perception, and mood. Recently, we demonstrated that A-kinase anchoring protein AKAP150 binds to a major regulatory domain of TREK-1, promoting drastic changes in channel regulation by polyunsaturated fatty acids, pH, and stretch, and by G-protein-coupled receptors to neurotransmitters and hormones. Here, we show that the microtubule-associated protein Mtap2 is another constituent of native TREK channels in the brain. Mtap2 binding to TREK-1 and TREK-2 does not affect directly channel properties but enhances channel surface expression and current density. This effect relies on Mtap2 binding to microtubules. Mtap2 and AKAP150 interacting sites in TREK-1 are distinct and both proteins can dock simultaneously. Their effects on TREK-1 surface expression and activation are cumulative. In neurons, the three proteins are simultaneously detected in postsynaptic dense bodies. AKAP150 and Mtap2 put TREK channels at the center of a complex protein network that finely tunes channel trafficking, addressing, and regulation.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cães , Feminino , Imunoprecipitação , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Oócitos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Distribuição Tecidual , Transfecção , Xenopus
18.
Neuron ; 104(5): 831-833, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31805261

RESUMO

In this issue of Neuron, Kanda et al. (2019) find that the two-pore domain potassium channels TRAAK and TREK1 drive axonal action potential repolarization for high-speed and high-frequency nervous impulses in mammalian myelinated nerves.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Nós Neurofibrosos , Potenciais de Ação , Animais , Axônios
19.
Biol Aujourdhui ; 213(1-2): 51-57, 2019.
Artigo em Francês | MEDLINE | ID: mdl-31274103

RESUMO

Migraine is a common, disabling neurological disorder with genetic, environmental and hormonal components and a prevalence estimated at ∼15%. Migraine episodes are notably related, among several factors, to electric hyperexcitability in sensory neurons. Their electrical activity is controlled by ion channels that generate current, specifically by the two-pore-domain potassium, K2P, channels, which inhibit electrical activity. Mutation in the gene encoding TRESK, a K2P channel, causes the formation of TRESK-MT1, the expected non-functional C-terminal truncated TRESK channel, and an additional unexpected protein, TRESK-MT2, which corresponds to a non-functional N-terminal truncated TRESK channel, through a mechanism called frameshift mutation-induced Alternative Translation Initiation (fsATI). TRESK-MT1 is inactive but TRESK-M2 targets two other ion channels, TREK1 and TREK2, inducing a great stimulation of the neuronal electrical activity that may cause migraines. These findings identify TREK1 and TREK2 as potential molecular targets for migraine treatment and suggest that fsATI should be considered as a distinct class of mutations.


Assuntos
Transtornos de Enxaqueca/genética , Canais de Potássio/genética , Animais , Humanos , Transtornos de Enxaqueca/metabolismo , Canais de Potássio/química , Canais de Potássio/classificação , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Multimerização Proteica/fisiologia , Transdução de Sinais/genética
20.
Neuron ; 101(2): 232-245.e6, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30573346

RESUMO

It is often unclear why some genetic mutations to a given gene contribute to neurological disorders and others do not. For instance, two mutations have previously been found to produce a dominant negative for TRESK, a two-pore-domain K+ channel implicated in migraine: TRESK-MT, a 2-bp frameshift mutation, and TRESK-C110R. Both mutants inhibit TRESK, but only TRESK-MT increases sensory neuron excitability and is linked to migraine. Here, we identify a new mechanism, termed frameshift mutation-induced alternative translation initiation (fsATI), that may explain why only TRESK-MT is associated with migraine. fsATI leads to the production of a second protein fragment, TRESK-MT2, which co-assembles with and inhibits TREK1 and TREK2, two other two-pore-domain K+ channels, to increase trigeminal sensory neuron excitability, leading to a migraine-like phenotype in rodents. These findings identify TREK1 and TREK2 as potential molecular targets in migraine and suggest that fsATI should be considered as a distinct class of mutations.


Assuntos
Potenciais de Ação/genética , Transtornos de Enxaqueca/patologia , Mutação/genética , Neurônios/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/fisiopatologia , Modelos Biológicos , Modelos Moleculares , Neurotransmissores/toxicidade , Óxido Nítrico/toxicidade , Oócitos , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Sprague-Dawley , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa