Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 82(12): 5205-10, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20503997

RESUMO

Hydrogen peroxide is a reactive oxygen species that is implicated in a number of neurological disease states and that serves a critical role in normal cell function. It is commonly exploited as a reporter molecule enabling the electrochemical detection of nonelectroactive molecules at electrodes modified with substrate-specific oxidative enzymes. We present the first voltammetric characterization of rapid hydrogen peroxide fluctuations at an uncoated carbon fiber microelectrode, demonstrating unprecedented chemical and spatial resolution. The carbon surface was electrochemically conditioned on the anodic scan and the irreversible oxidation of peroxide was detected on the cathodic scan. The oxidation potential was dependent on scan rate, occurring at +1.2 V versus Ag/AgCl at a scan rate of 400 V.s(-1). The relationship between peak oxidation current and concentration was linear across the physiological range tested, with deviation from linearity above 2 mM and a detection limit of 2 muM. Peroxide was distinguished from multiple interferents, both in vitro and in brain slices. The enzymatic degradation of peroxide was monitored, as was peroxide evolution in response to glucose at a glucose oxidase modified carbon fiber electrode. This novel approach provides the requisite sensitivity, selectivity, spatial and temporal resolution to study dynamic peroxide fluctuations in discrete biological locations.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Eletroquímica/métodos , Peróxido de Hidrogênio/análise , Animais , Técnicas Biossensoriais/instrumentação , Química Encefálica , Fibra de Carbono , Eletroquímica/instrumentação , Peróxido de Hidrogênio/metabolismo , Limite de Detecção , Masculino , Microeletrodos , Ratos , Ratos Sprague-Dawley
2.
West J Emerg Med ; 18(6): 1114-1119, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29085545

RESUMO

INTRODUCTION: The WestJEM Blog and Podcast Watch presents high-quality open-access educational blogs and podcasts in emergency medicine based on the ongoing Academic Life in Emergency Medicine (ALiEM) Approved Instructional Resources (AIR) and AIR-Professional (Pro) series. Both series critically appraise open-access educational blogs and podcasts in EM using an objective scoring instrument. This installment of the blog and podcast watch series curated and scored relevant posts in the specific topic of toxicology emergencies from the AIR-Pro Series. METHODS: The AIR-Pro Series is a continuously building curriculum covering a new subject area every two months. For each area, eight EM chief residents identify 3-5 advanced clinical questions. Using FOAMsearch.net and FOAMSearcher to search blogs and podcasts, relevant posts are scored by eight reviewers from the AIR-Pro editorial board, which is comprised of EM faculty and chief residents at various institutions across North America. The scoring instrument contains five measurement outcomes based on seven-point Likert scales: recency, accuracy, educational utility, evidence based, and references. The AIR-Pro label is awarded to posts with a score of ≥28 (out of 35) points. An "honorable mention" label is awarded if board members collectively felt that the blogs were valuable and the scores were > 25. RESULTS: A total of 31 blog posts and podcasts were included. Key educational pearls from the six high-quality AIR-Pro posts and four honorable mentions are summarized. CONCLUSION: The WestJEM ALiEM Blog and Podcast Watch series is based on the AIR and AIR-Pro Series, which attempts to identify high-quality educational content on open-access blogs and podcasts. This series provides an expert-based, crowdsourced approach towards critically appraising educational social media content for EM clinicians. This installment focuses on toxicology emergencies.


Assuntos
Blogging , Medicina de Emergência/educação , Toxicologia/educação , Webcasts como Assunto , Blogging/normas , Currículo , Avaliação Educacional , Medicina de Emergência/normas , Humanos , Internato e Residência , Publicação de Acesso Aberto , Toxicologia/normas , Webcasts como Assunto/normas
3.
ACS Chem Neurosci ; 4(5): 782-9, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23556461

RESUMO

The dopaminergic neurons of the nigrostriatal dopamine (DA) projection from the substantia nigra to the dorsal striatum become dysfunctional and slowly degenerate in Parkinson's disease, a neurodegenerative disorder that afflicts more than one million Americans. There is no specific known cause for idiopathic Parkinson's disease; however, multiple lines of evidence implicate oxidative stress as an underlying factor in both the initiation and progression of the disease. This involves the enhanced generation of reactive oxygen species, including hydrogen peroxide (H2O2), whose role in complex biological processes is not well understood. Using fast-scan cyclic voltammetry at bare carbon-fiber microelectrodes, we have simultaneously monitored and quantified H2O2 and DA fluctuations in intact striatal tissue under basal conditions and in response to the initiation of oxidative stress. Furthermore, we have assessed the effect of acute increases in local H2O2 concentration on both electrically evoked DA release and basal DA levels. Increases in endogenous H2O2 in the dorsal striatum attenuated electrically evoked DA release, and also decreased basal DA levels in this brain region. These novel results will help to disambiguate the chemical mechanisms underlying the progression of neurodegenerative disease states, such as Parkinson's disease, that involve oxidative stress.


Assuntos
Dopamina/metabolismo , Peróxido de Hidrogênio/metabolismo , Neostriado/metabolismo , Estresse Oxidativo , Animais , Estimulação Elétrica , Técnicas Eletroquímicas , Masculino , Neostriado/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa