Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716885

RESUMO

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
Inorg Chem ; 62(46): 18926-18939, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37930252

RESUMO

WHO lists AMR as one of the top ten global public health issues. Therefore, constant effort is needed to develop more efficient antimicrobial drugs. As a result, earth-abundant transition-metal complexes have emerged as an excellent solution. In this regard, new aminoquinoline-based copper(II) pincer complexes 1-3 were designed, synthesized, and characterized by modern spectroscopic techniques. It is worth mentioning that, at the highest concentration (1024 µg/mL) of complexes (1-3), the hemolysis was found to be <15%, implying their less toxicity. Further, the complexes effectively interfered with the growth of Gram positive MRSA and the fungus Candida albicans. Among them, complex 2 was promising (MIC = 16 µg/mL) against MRSA, which was better than the known antibacterial drug kanamycin (64 µg/mL) under identical conditions. The Alamar blue cell viability test and the MBC/MFC identified by spot assay were in accordance with MIC values. Moreover, the insilico studies explained the most probable mechanism of action as inhibition of cell wall biosynthesis and dysfunction of antibiotic sensing proteins. Similarly, the antifungal action might be due to the cell surface adhesion protein dysfunction by the complexes. Furthermore, we are expecting to draw these compounds for clinical applications.


Assuntos
Cobre , Staphylococcus aureus Resistente à Meticilina , Cobre/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Candida albicans , Ligantes
3.
Inorg Chem ; 59(24): 18010-18017, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33300784

RESUMO

A mononuclear nonheme iron(III) complex with a tetraamido macrocyclic ligand (TAML), [(TAML)FeIII]- (1), is a selective precatalyst for four-electron reduction of dioxygen by ferrocene derivatives in the presence of acetic acid (CH3COOH) in acetone. This is the first work to show that a nonheme iron(III) complex catalyzes the four-electron reduction of O2 by one-electron reductants. An iron(V)-oxo complex, [(TAML)FeV(O)]- (2), was produced by oxygenation of 1 with O2 via the formation of triacetone triperoxide (TATP), acting as an autocatalyst that shortened the induction time for the generation of 2. Decamethylferrocene (Me10Fc) and octamethylferrocene (Me8Fc) reduced 2 to 1 by two electrons in the presence of CH3COOH to produce decamethylferrocenium cation (Me10Fc+) and octamethylferrocenium cation (Me8Fc+), respectively. Then, 1 was oxygenated by O2 to regenerate 2 via the formation of TATP. In the cases of ferrocene (Fc), bromoferrocene (BrFc) and 1,1'-dibromoferrocene (Br2Fc), initial electron transfer from ferrocene derivatives to 2 occurred; however, neither a second proton-coupled electron transfer from ferrocene derivatives to 2 nor a catalytic four-electron reduction of O2 occurred.

4.
J Am Chem Soc ; 141(3): 1324-1336, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30580510

RESUMO

Mononuclear nonheme manganese(IV)-oxo complexes binding calcium ion and other redox-inactive metal ions, [(dpaq)MnIV(O)]+-M n+ (1-Mn+, M n+ = Ca2+, Mg2+, Zn2+, Lu3+, Y3+, Al3+, and Sc3+) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate), were synthesized by reacting a hydroxomanganese(III) complex, [(dpaq)MnIII(OH)]+, with iodosylbenzene (PhIO) in the presence of redox-inactive metal ions (M n+). The Mn(IV)-oxo complexes were characterized using various spectroscopic techniques. In reactivity studies, we observed contrasting effects of M n+ on the reactivity of 1-M n+ in redox reactions such as electron-transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. In the OAT and ET reactions, the reactivity order of 1-M n+, such as 1-Sc3+ ≈ 1-Al3+ > 1-Y3+ > 1-Lu3+ > 1-Zn2+ > 1-Mg2+ > 1-Ca2+, follows the Lewis acidity of M n+ bound to the Mn-O moiety; that is, the stronger the Lewis acidity of M n+, the higher the reactivity of 1-M n+ becomes. In sharp contrast, the reactivity of 1-M n+ in the HAT reaction was reversed, giving the reactivity order 1-Ca2+ > 1-Mg2+ > 1-Zn2+ > 1-Lu3+> 1-Y3+> 1-Al3+ ≈ 1-Sc3+; that is, the higher is Lewis acidity of M n+, the lower the reactivity of 1-M n+ in the HAT reaction. The latter result implies that the Lewis acidity of M n+ bound to the Mn-O moiety can modulate the basicity of the metal-oxo moiety, thus influencing the HAT reactivity of 1-M n+; cytochrome P450 utilizes the axial thiolate ligand to increase the basicity of the iron-oxo moiety, which enhances the reactivity of compound I in C-H bond activation reactions.

5.
Inorg Chem ; 58(19): 12975-12985, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31535857

RESUMO

Activation of CO2 and conversion into value-added products is an effective option to mitigate CO2 emission. The nickel(II) complexes [Ni(L1)](ClO4)2 1, [Ni(L2)](ClO4)2 2, and [Ni(L3)(CH3CN)2](Ph4B)2 3 of diazepane-based ligands [1,4-bis[(pyridin-2-yl-methyl)]-1,4-diazepane (L1), 1,4-bis[2-(pyridin-2-yl)ethyl]-1,4-diazepane (L2), and 4-bis[2-(quinoline-2-yl)-methyl]-1,4-diazepane (L3)] have been synthesized and structurally characterized. The complexes were employed as the catalysts for the conversion of atmospheric CO2 into organic carbonates in the absence of cocatalyst at 1 atm pressure. The single-crystal X-ray structures of 1 and 2 exhibit distorted square-planar geometry with almost identical Ni-N bond distances (1.891-1.946 Å). The geometry of the complexes rearranged into octahedral in acetonitrile, which was studied by paramagnetic 1H NMR and electronic spectra. The complexes selectively captured CO2 from the atmospheric air and readily converted epoxides into cyclic carbonates without any cocatalyst. They showed a maximum yield of 25% (TON, 500) using 1 atm air, which is drastically enhanced up to 89% (TON, 1780) using 1 atm pure CO2 gas. This is the highest catalytic efficiency reported for CO2 fixation using nickel-based catalysts to date. The CO2 fixation reaction without organic substrate showed the formation of carbonate-bridged dinuclear nickel(II) complexes. They showed characteristic absorption bands around 571-612 nm and were further confirmed by electrospray ionization mass spectrometry, IR, and single-crystal X-ray structures. The molecular structure of carbonate-bridged intermediates exhibited two Ni2+-centers with distorted square pyramidal geometries for 2a and 3a but distorted octahedral and square pyramidal geometries for 1a. The CO2 fixation reactions possibly proceeded via the formation of CO2-bound nickel species.

6.
Angew Chem Int Ed Engl ; 58(45): 16124-16129, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31489757

RESUMO

A mononuclear nonheme manganese(IV)-oxo complex binding the Ce4+ ion, [(dpaq)MnIV (O)]+ -Ce4+ (1-Ce4+ ), was synthesized by reacting [(dpaq)MnIII (OH)]+ (2) with cerium ammonium nitrate (CAN). 1-Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI-MS, resonance Raman, XANES, and EXAFS, showing an Mn-O bond distance of 1.69 Šwith a resonance Raman band at 675 cm-1 . Electron-transfer and oxygen atom transfer reactivities of 1-Ce4+ were found to be greater than those of MnIV (O) intermediates binding redox-inactive metal ions (1-Mn+ ). This study reports the first example of a redox-active Ce4+ ion-bound MnIV -oxo complex and its spectroscopic characterization and chemical properties.

7.
J Am Chem Soc ; 140(40): 12695-12699, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30269497

RESUMO

A mononuclear non-heme Mn(III)-aqua complex, [(dpaq)MnIII(OH2)]2+ (1, dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate), is capable of conducting hydrogen atom transfer (HAT) reactions much more efficiently than the corresponding Mn(III)-hydroxo complex, [(dpaq)MnIII(OH)]+ (2); the high reactivity of 1 results from the positive one-electron reduction potential of 1 ( Ered vs SCE = 1.03 V), compared to that of 2 ( Ered vs SCE = -0.1 V). The HAT mechanism of 1 varies between electron transfer followed by proton transfer and one-step concerted proton-coupled electron transfer, depending on the one-electron oxidation potentials of substrates. To the best of our knowledge, this is the first example showing that metal(III)-aqua complex can be an effective H-atom abstraction reagent.

8.
Chemistry ; 24(68): 17927-17931, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30267428

RESUMO

A mononuclear manganese(V)-oxo complex with tetraamido macrocyclic ligand (TAML), [MnV (O)(TAML)]- (1), is a sluggish oxidant in oxidation reactions. Herein, a mononuclear manganese(V)-oxo TAML cation radical complex, [MnV (O)(TAML+. )] (2), is reported. It was synthesized by reacting [MnIII (TAML)]- with 3.0 equivalents of [RuIII (bpy)3 ]3+ or upon addition of one-electron oxidant to 1 and then characterized thoroughly with various spectroscopic techniques along with DFT calculations. Although 1 is a sluggish oxidant, 2 is a strong oxidant capable of activating C-H bonds of hydrocarbons (i.e., hydrogen atom transfer reaction) and transferring its oxygen atom to thioanisoles and olefins (i.e., oxygen atom transfer reaction).

9.
Inorg Chem ; 57(17): 10945-10952, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30133298

RESUMO

Photodynamics and electron-transfer reactivity of an excited state derived from an earth-abundant mononuclear cobalt-oxygen complex ground state, [(TAML)CoIV(O)]2- (1; H4TAML = 3,4,8,9-tetrahydro-3,3,6,6,9,9-hexamethyl-1 H-1,4,8,11-benzotetraazo-cyclotridecane-2,5,7,10-(6 H, 11 H)tetrone), prepared by electron-transfer oxidation of Li[(TAML)CoIII]·3(H2O) (2) in a 1:1 acetonitrile/acetone solvent mixture at 5 °C, were investigated using a combination of femtosecond and nanosecond laser absorption spectroscopy. Visible light photoexcitation of 1 (λexc = 393 nm) resulted in generation of the excited state S2* (lifetime: 1.4(4) ps), detected 2 ps after laser irradiation by femtosecond laser spectroscopy. The initially formed excited state S2* converted to a lower-lying excited state, S1* (λmax = 580 nm), with rate constant kc = 7(2) × 1011 s-1 (S2* → S1*). S1* exhibited a 0.6(1) ns lifetime and converted to the initial ground state 1 with rate constant kd = 1.7(3) × 109 s-1 (S1* → 1). The same excited state dynamics was observed when 1 was generated by electron-transfer oxidation of 2 using different one-electron oxidants such as Cu(OTf)2 (OTf- = triflate anion), [Fe(bpy)3]3+ (bpy = 2,2'-bipyridine), and tris(4-bromophenyl)ammoniumyl radical cation (TBPA•+). The electron-transfer reactivity of S1* was probed by nanosecond laser photoexcitation of 1 in the presence of a series of electron donors with different one-electron oxidation potentials ( Eox vs SCE): benzene (2.35 V), toluene (2.20 V), m-xylene (2.02 V), and anisole (1.67 V). The excited state S1* engaged in electron-transfer reactions with m-xylene and anisole to generate π-dimer radical cations of m-xylene and anisole, respectively, observed by nanosecond laser transient absorption spectroscopy, whereas no reactivity was observed toward benzene and toluene. Such differential electron-transfer reactivity depending on the Eox values of electron donors allowed the estimation of the one-electron reduction potential of S1* ( Ered*) as 2.1(1) V vs SCE, which is much higher than that of the ground state ( Ered = 0.86 V vs SCE).

10.
Inorg Chem ; 56(9): 5096-5104, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28422498

RESUMO

An iron complex with a tetraamido macrocyclic ligand, [(TAML)FeIII]-, was found to be an efficient and selective catalyst for allylic oxidation of cyclohexene by dioxygen (O2); cyclohex-2-enone was obtained as the major product along with cyclohexene oxide as the minor product. An iron(V)-oxo complex, [(TAML)FeV(O)]-, which was formed by activating O2 in the presence of cyclohexene, initiated the autoxidation of cyclohexene with O2 to produce cyclohexenyl hydroperoxide, which reacted with [(TAML)FeIII]- to produce [(TAML)FeV(O)]- by autocatalysis. Then, [(TAML)FeV(O)]- reacted rapidly with [(TAML)FeIII]- to produce a µ-oxo dimer, [(TAML)FeIV(O)FeIV(TAML)]2-, which was ultimately converted to [(TAML)FeV(O)]- when [(TAML)FeIII]- was not present in the reaction solution. An induction period was observed in the autocatalytic production of [(TAML)FeV(O)]-. The induction period was shortened with increasing catalytic amounts of [(TAML)FeV(O)]- and cyclohexenyl hydroperoxide, whereas the induction period was prolonged by adding catalytic amounts of a spin trapping reagent such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The allylic oxidation of cycloalkenes was also found to depend on the allylic C-H bond dissociation energies, suggesting that the hydrogen atom abstraction from the allylic C-H bonds of cycloalkenes is the rate-determining radical chain initiation step. In this study, we have shown that an iron(III) complex with a tetraamido macrocyclic ligand is an efficient catalyst for the allylic oxidation of cyclohexene via an autocatalytic radical chain mechanism and that [(TAML)FeV(O)]- acts as a reactive intermediate for the selective oxygenation of cyclohexene with O2 to produce cyclohex-2-enone predominantly.

11.
Angew Chem Int Ed Engl ; 56(13): 3510-3515, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28266771

RESUMO

Metal-superoxo species are involved in a variety of enzymatic oxidation reactions, and multi-electron oxidation of substrates is frequently observed in those enzymatic reactions. A CrIII -superoxo complex, [CrIII (O2 )(TMC)(Cl)]+ (1; TMC=1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), is described that acts as a novel three-electron oxidant in the oxidation of dihydronicotinamide adenine dinucleotide (NADH) analogues. In the reactions of 1 with NADH analogues, a CrIV -oxo complex, [CrIV (O)(TMC)(Cl)]+ (2), is formed by a heterolytic O-O bond cleavage of a putative CrII -hydroperoxo complex, [CrII (OOH)(TMC)(Cl)], which is generated by hydride transfer from NADH analogues to 1. The comparison of the reactivity of NADH analogues with 1 and p-chloranil (Cl4 Q) indicates that oxidation of NADH analogues by 1 proceeds by proton-coupled electron transfer with a very large tunneling effect (for example, with a kinetic isotope effect of 470 at 233 K), followed by rapid electron transfer.

12.
J Am Chem Soc ; 138(27): 8523-32, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27310336

RESUMO

A mononuclear non-heme manganese(V)-oxo complex, [Mn(V)(O)(TAML)](-) (1), was synthesized by activating dioxygen in the presence of olefins with weak allylic C-H bonds and characterized structurally and spectroscopically. In mechanistic studies, the formation rate of 1 was found to depend on the allylic C-H bond dissociation energies (BDEs) of olefins, and a kinetic isotope effect (KIE) value of 16 was obtained in the reactions of cyclohexene and cyclohexene-d10. These results suggest that a hydrogen atom abstraction from the allylic C-H bonds of olefins by a putative Mn(IV)-superoxo species, which is formed by binding O2 by a high-spin (S = 2) [Mn(III)(TAML)](-) complex, is the rate-determining step. A Mn(V)-oxo complex binding Sc(3+) ion, [Mn(V)(O)(TAML)](-)-(Sc(3+)) (2), was also synthesized in the reaction of 1 with Sc(3+) ion and then characterized using various spectroscopic techniques. The binding site of the Sc(3+) ion was proposed to be the TAML ligand, not the Mn-O moiety, probably due to the low basicity of the oxo group compared to the basicity of the amide carbonyl group in the TAML ligand. Reactivity studies of the Mn(V)-oxo intermediates, 1 and 2, in oxygen atom transfer and electron-transfer reactions revealed that the binding of Sc(3+) ion at the TAML ligand of Mn(V)-oxo enhanced its oxidizing power with a positively shifted one-electron reduction potential (ΔEred = 0.70 V). This study reports the first example of tuning the second coordination sphere of high-valent metal-oxo species by binding a redox-inactive metal ion at the supporting ligand site, thereby modulating their electron-transfer properties as well as their reactivities in oxidation reactions.


Assuntos
Manganês/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Oxigênio/química , Técnicas de Química Sintética , Transporte de Elétrons
13.
Chemistry ; 20(36): 11346-61, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25100547

RESUMO

A new family of nickel(II) complexes of the type [Ni(L)(CH(3)CN)](BPh(4))(2), where L=N-methyl-N,N',N'-tris(pyrid-2-ylmethyl)-ethylenediamine (L1, 1), N-benzyl-N,N',N'-tris(pyrid-2-yl-methyl)-ethylenediamine (L2, 2), N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-(6-methyl-pyrid-2-yl-methyl)-ethylenediamine (L3, 3), N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-(quinolin-2-ylmethyl)-ethylenediamine (L4, 4), and N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-imidazole-2-ylmethyl)-ethylenediamine (L5, 5), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single-crystal X-ray structure of [Ni(L(3))(CH(3)CN)](BPh(4))(2) reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one-electron oxidation corresponding to the Ni(II) /Ni(III) redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m-CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1-10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH(3)CN)](BPh(4))(2) by the strongly σ-bonding but weakly π-bonding imidazolylmethyl arm as in [Ni(L5)(CH(3)CN)](BPh(4))(2) or the sterically demanding 6-methylpyridylmethyl ([Ni(L3)(CH(3)CN)](BPh(4))(2) and the quinolylmethyl arms ([Ni(L4)(CH(3)CN)](BPh(4))(2), both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin-state reactivity for the high-spin [(N5)Ni(II)-O(.)] intermediate (ts1(hs), ts2(doublet)), which has a low-spin state located closely in energy to the high-spin state. The lower catalytic activity of complex 5 is mainly due to the formation of thermodynamically less accessible m-CPBA-coordinated precursor of [Ni(II) (L5)(OOCOC(6)H(4)Cl)](+) (5 a). Adamantane is oxidized to 1-adamantanol, 2-adamantanol, and 2-adamantanone (3°/2°, 10.6-11.5), and cumene is selectively oxidized to 2-phenyl-2-propanol. The incorporation of sterically hindering pyridylmethyl and quinolylmethyl donor ligands around the Ni(II) leads to a high 3°/2° bond selectivity for adamantane oxidation, which is in contrast to the lower cyclohexane oxidation activities of the complexes.

14.
Dalton Trans ; 53(34): 14364-14377, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39136161

RESUMO

The invention of efficient chemotherapeutic drugs is essential for human health and development. Keeping this in mind, a series of copper(II) pincer complexes, 1-4, of ligands L1(H) = 2-morpholino-N-(quinolin-8-yl)acetamide, L2(H) = 2-di-n-propylamino-N-(quinolin-8-yl)acetamide, L3(H) = 2-di-n-butylamino-N-(quinolin-8-yl)acetamide and L4(H) = 2-di-n-benzylamino-N-(quinolin-8-yl)acetamide have been synthesized, characterized, and utilized for inhibiting cancer proliferation. Complexes 1-4 showed very efficient activity against lung (A549) and breast (MCF-7) cancer cells, which are the most frequently diagnosed cancers according to the WHO. Among them, 1 was highly active against lung cancer cells with an IC50 value of 8 µM, showing no toxicity towards common L929 fibroblast cell lines (IC50 > 1000 µM). Moreover, AO-EB staining inferred that this cellular demise was attributed to apoptosis, which was determined to be 25.91% of cells by flow cytometry at the IC50 concentration. Furthermore, carboxy-H2DCFDA staining revealed the involvement of ROS in the mechanism. Interestingly, JC-1 dye staining revealed a change in the potential of the mitochondrial membrane, which indicates the enhanced production of ROS in mitochondria. A deep search for the mechanism through in silico studies guided us to the fact that complexes 1-4 might perturb the function of complex I in mitochondria. Furthermore, the studies can be expanded towards clinical applications mainly with morpholine appended complex 1.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Cobre , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Humanos , Cobre/química , Cobre/farmacologia , Apoptose/efeitos dos fármacos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Células A549
15.
Dalton Trans ; 52(40): 14465-14476, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37772631

RESUMO

To expand the array of chemotherapeutic drugs, earth-abundant metal complexes are found to be the future direction. In this regard, new zinc(II) complexes 1-3 of 8-aminoquinoline-based pincer ligands were synthesized, characterized and tested for their anticancer activity. The IC50 values of these complexes were estimated by an MTT assay to be 16.35-17.95 µM and 33.35-40 µM against A549 lung and MCF-7 breast cancer cells respectively. Among them, 3 was slightly better than the other complexes and, thus, subjected to detailed studies. Moreover, the ligand corresponding to 3 was less active against both the cell lines than the complex. Further, 3 showed no toxicity against normal fibroblast cell line L929, which instantly elevated the drug characteristic of our complex. An AO-EB staining assay revealed that 3 can induce apoptosis in A549, and it was quantified by flow cytometry as 22.77%. Moreover, the depolarization of the mitochondrial membrane potential determined by JC-1 staining indicated excess ROS production sites in the mitochondria, which was confirmed by carboxy-H2DCFDA staining. Interestingly, the present complexes show better activity than that of the standard drug cisplatin against A549 cells. Overall, the studies provided promising results that can be extended for clinical applications.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Células A549 , Antineoplásicos/farmacologia , Apoptose , Complexos de Coordenação/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Zinco/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
16.
J Inorg Biochem ; 247: 112309, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451084

RESUMO

A series of amine (1-6) and imine (5',6') based copper(II) complexes with tridentate (NNO) ligand donors were synthesized and characterized using modern analytical techniques. All the complexes were subjected to 2-aminophenol (OAP) oxidation to form 2-aminophenoxazin-3-one, as a functional analogue of an enzyme, phenoxazinone synthase. In addition, a critical comparison of the reactivity using the amine-based complexes with their respective imine counterparts was achieved in both experimental as well as theoretical studies. For instance, the kinetic measurement revealed that the imine-based copper(II) complexes (kcat, 2.4 × 105-6.2 × 106 h-1) are better than amine-based (kcat, 6.3 × 104-3.9 × 105 h-1) complexes. The complex-substrate adducts [Cu(L3)(OAP)] (7) and [Cu(L3')(OAP)] (7') were characterized for both systems by mass spectrometry. Further, the DFT study was performed with amine- (3) and imine- (3') based copper(II) complexes, to compare their efficacy in the oxidation of OAP. The mechanistic investigations reveal that the key elementary step to determine the reactivity of 3 and 3' is the proton-coupled electron transfer (PCET) step occurring from the intermediates 7/7'. Further, the computed HOMO-LUMO energy gap of 7' was smaller than 7 by 0.8 eV, which indicates the facile PCET compared to that of 7. Moreover, the coupling of the OAP moiety using imine-complexes (ΔGR.E = -5.8 kcal/mol) was found to be thermodynamically more favorable than amine complexes (ΔGR.E = +3.3 kcal/mol). Overall, the theoretical findings are in good agreement with the experimental results.


Assuntos
Cobre , Iminas , Cobre/química , Ligantes , Aminas/química , Oxirredução
17.
Dalton Trans ; 51(33): 12453-12466, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35730410

RESUMO

A carbazolyl appended trans-pyridyl porphyrin (1) was synthesized and its dicationic form 2 was obtained by methylation of the pyridyl group. Copper and zinc complexes of porphyrin 2 (Cu(II), 3; Zn(II), 4) were isolated and characterized by various modern spectroscopic techniques. The DNA binding properties of 2, 3, and 4 have been explored against calf thymus-DNA (CT-DNA). DNA binding was quantized using the intrinsic binding constant (Kb) that was calculated by UV-visible absorption spectroscopy, and the value Kb = 1.6 × 106 M-1 for compound 2 reveals a better interaction of 2 towards CT-DNA than those of 3 (3.1 × 105 M-1) and 4 (3.4 × 105 M-1), which follows the order 2 > 4 > 3. The fluorescence quenching efficiency and ethidium bromide quenching assay also indicated a good binding affinity of all the compounds towards CT-DNA. Furthermore, the spectroscopic data suggest that the possible mode of interaction is intercalation. The docking studies were in accordance with the experimental results. Notably, DNA cleavage studies reveal that 2 shows better damage than 3 and 4 which is in accordance with the binding affinity order 2 > 4 > 3. The observed quantum yield (2: 0.65, 3: 0.33, and 4: 0.97) and no change in DNA cleavage in the presence of NaN3 reveal the involvement of singlet oxygen. The singlet excited state lifetimes were in the range of 6.3-1.2 ns. Furthermore, these porphyrins can be investigated as interesting photosensitizers in photodynamic therapy and photochemotherapy.


Assuntos
Porfirinas , Carbazóis , Cobre/química , DNA/química , Clivagem do DNA , Porfirinas/química
18.
J Inorg Biochem ; 216: 111313, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277049

RESUMO

The copper(II) complexes [Cu(L)NO3] (1-9) of newer N3O ligands (L1-L9) have been synthesized and characterized. The molecular structure of 1, 4, and 7 exhibited nearly a perfect square pyramidal geometry (τ, 0.04-0.11). The Cu-OPhenolate bonds (~ 1.91 Å) are shorter than the Cu-N bonds (~ 2.06 Å) due to the stronger coordination of anionic phenolate oxygen. The Cu(II)/Cu(I) redox potentials of 1-9 appeared around -0.102 to -0.428 V versus Ag/Ag+ in water. The electronic spectra of the complexes showed the d-d transitions around 643-735 nm and axial EPR parameter (g||, 2.243-2.270; A||, 164-179 × 10-4 cm-1) that corresponds to square pyramidal geometry. The bonding parameters α2, 0.760-0.825; ß2, 0.761-0.994; γ2, 0.504-0.856 and K||, 0.698-0.954 and K⊥, 0.383-0.820 calculated from EPR spectra and energies of d-d transitions. The complexes catalyzed the conversion of substrate 2-aminophenol into 2-aminophenoxazine-3-one using molecular oxygen in the water and exhibited the yields of 41-61%. The formation of the product is accomplished by the appearance of a new absorption band at 430 nm and the rates of formation were calculated as 6.98-15.65 × 10-3 s-1 in water. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers (kcat) 9.11 × 105 h-1 for 1 and 4.66 × 105 h-1 for 9 in water. The spectral, redox and kinetic studies were performed in water to mimic the enzymatic oxidation reaction conditions.


Assuntos
Complexos de Coordenação/química , Cobre/química , Modelos Químicos , Oxirredutases/química
19.
Dalton Trans ; 50(8): 2824-2831, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33533342

RESUMO

A mononuclear manganese(iii)-peroxo complex [MnIII(N3Py2)(O2)]+ (1a) bearing a non-heme N,N'-dimethyl-N-(2-(methyl(pyridin-2-ylmethyl)amino)ethyl)-N'-(pyridin-2-ylmethyl)ethane-1,2-diamine (N3Py2) ligand was synthesized by the reaction of [Mn(N3Py2)(H2O)](ClO4)2 (1) with hydrogen peroxide and triethylamine in CH3CN at 25 °C. The reactivity of 1a in aldehyde deformylation using 2-phenyl propionaldehyde (2-PPA) was studied and the reaction kinetics was monitored by UV-visible spectroscopy. A kinetic isotope effect (KIE) = 1.7 was obtained in the reaction of 1a with 2-PPA and α-[D1]-PPA, suggesting nucleophilic character of 1a. The activation parameters ΔH‡ and ΔS‡ were determined using the Eyring plot while Ea was obtained from the Arrhenius equation by performing the reaction between 288 and 303 K. Hammett constants (σp) of para-substituted benzaldehydes p-X-Ph-CHO (X = Cl, F, H, and Me) were linear with a slope (ρ) = 3.0. Computational study suggested that the side-on structure of 1a is more favored over the end-on structure and facilitates the reactivity of 1a.

20.
Dalton Trans ; 48(16): 5203-5213, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30941378

RESUMO

Protons play an important role in promoting O-O or M-O bond cleavage of metal-peroxo complexes. Treatment of side-on O2-bound [PPN][MnIV(TMSPS3)(O2)] (1, PPN = bis(triphenylphosphine)iminium and TMSPS3H3 = 2,2',2''-trimercapto-3,3',3''-tris(trimethylsilyl)triphenylphosphine) with perchloric acid (HClO4) in the presence of PR3 (R = phenyl or p-tolyl) results in the formation of neutral five-coordinate MnIII(OPR3)(TMSPS3) complexes (R = phenyl, 2a; p-tolyl, 2b), which are confirmed by X-ray crystallography. Isotope labelling experiments demonstrate that the oxygen atom in the phosphine oxide product derives from the peroxo ligand of 1. Reactions of 1 with weak proton donors, such as phenylthiol, phenol, substituted phenol and methanol, are also investigated to explore the reactivity of the MnIV-peroxo complex, leading to the isolation of a series of five-coordinate [MnIII(L)(TMSPS3)]- complexes (L = phenylthiolate, phenolate or methoxide). Mechanistic aspects of the reactions of the MnIV-peroxo complex with proton donors are discussed as well.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa