Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 290(36): 21773-86, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26088137

RESUMO

The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies.


Assuntos
Indutores da Angiogênese/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Degeneração Macular/imunologia , Indutores da Angiogênese/química , Indutores da Angiogênese/metabolismo , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/imunologia , Angiopoietina-2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Desenho de Fármacos , Estudos de Viabilidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Cinética , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Modelos Moleculares , Terapia de Alvo Molecular/métodos , Mutação , Ligação Proteica/imunologia , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Transl Vis Sci Technol ; 11(10): 27, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36255358

RESUMO

Purpose: Diabetic macular edema (DME) is the leading cause of vision loss and blindness among working-age adults. Although current intravitreal anti-vascular endothelial growth factor (VEGF) therapies improve vision for many patients with DME, approximately half do not achieve the visual acuity required to drive. We therefore sought additional approaches to resolve edema and improve vision for these patients. Methods: We explored direct agonists of Tie2, a receptor known to stabilize vasculature and prevent leakage. We identified a multivalent PEG-Fab conjugate, Tie2.1-hexamer, that oligomerizes Tie2 and drives receptor activation and characterized its activities in vitro and in vivo. Results: Tie2.1-hexamer normalized and stabilized intercellular junctions of stressed endothelial cell monolayers in vitro, suppressed vascular leak in mice under conditions where anti-VEGF alone was ineffective, and demonstrated extended ocular exposure and robust pharmacodynamic responses in non-human primates. Conclusions: Tie2.1-hexamer directly activates the Tie2 pathway, reduces vascular leak, and is persistent within the vitreal humor. Translational Relevance: Our study presents a promising potential therapeutic for the treatment of DME.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Camundongos , Animais , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Retinopatia Diabética/tratamento farmacológico , Fatores de Crescimento Endotelial/uso terapêutico , Acuidade Visual , Transtornos da Visão/complicações , Transtornos da Visão/tratamento farmacológico , Cegueira/complicações
3.
J Bacteriol ; 192(19): 4894-903, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675476

RESUMO

Salmonella enterica species are exposed to envelope stresses due to their environmental and infectious lifestyles. Such stresses include amphipathic cationic antimicrobial peptides (CAMPs), and resistance to these peptides is an important property for microbial virulence for animals. Bacterial mechanisms used to sense and respond to CAMP-induced envelope stress include the RcsFCDB phosphorelay, which contributes to survival from polymyxin B exposure. The Rcs phosphorelay includes two inner membrane (IM) proteins, RcsC and RcsD; the response regulator RcsB; the accessory coregulator RcsA; and an outer membrane bound lipoprotein, RcsF. Transcriptional activation of the Rcs regulon occurred within minutes of exposure to CAMP and during the first detectable signs of CAMP-induced membrane disorder. Rcs transcriptional activation by CAMPs required RcsF and preservation of its two internal disulfide linkages. The rerouting of RcsF to the inner membrane or its synthesis as an unanchored periplasmic protein resulted in constitutive activation of the Rcs regulon and RcsCD-dependent phosphorylation. These findings suggest that RcsFCDB activation in response to CAMP-induced membrane disorder is a result of a change in structure or availability of RcsF to the IM signaling constituents of the Rcs phosphorelay.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Lipoproteínas/genética , Reação em Cadeia da Polimerase , Ligação Proteica , Regulon/genética , Regulon/fisiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/metabolismo
4.
Invest Ophthalmol Vis Sci ; 60(13): 4097-4108, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574535

RESUMO

Purpose: Investigate a significant, dose-related increase in IOP, leading to glaucomatous damage to the neuroretina and optic nerve following intravitreal (ITV) administration of a bispecific F(ab')2 [anti-VEGF/Angiopoietins [ANGPT]F(ab')2] molecule in adult monkeys. Methods: ITV ocular tolerability and investigation of anti-VEGF/ANGPT F(ab')2 (blocking both ANGPT1 and ANGPT2) was done in monkeys; mechanistic studies were done in neonatal mice. Results: Following the second ITV dose of anti-VEGF/ANGPT F(ab')2, all 1.5- and 4-mg/eye treated monkeys developed elevated IOP, which eventually was associated with optic disc cupping and thinning of the neuroretinal rim. Histopathologic examination showed nonreversible axonal degeneration in the optic nerves of animals administered 1.5 mg/eye and higher that was considered secondary to high IOP. Anti-ANGPT Fab also caused elevated IOP in monkeys, but anti-VEGF Fab did not contribute to the IOP increase. In addition, an anti-ANGPT2-selective antibody did not change IOP. In mice simultaneous blockade of ANGPT1 and ANGPT2 impaired the expansion and formation of Schlemm's canal (SC) vessels, similar to genetic ablation of Angpt1/Angpt2 and their receptor TIE2. As previously reported, blocking ANGPT2 alone did not affect SC formation in mice. Conclusions: Dual inhibition of ANGPT1/ANGPT2, but not ANGPT2 alone, leads to increased IOP and glaucomatous damage in monkeys. This confirms a role for TIE2/ANGPT signaling in the control of IOP in adults, a finding initially identified in transgenic mice. Dual pharmacologic inhibition of ANGPT1/ANGPT2 may affect aqueous drainage and homeostasis in adult monkeys and may be useful in developing novel models of glaucoma.


Assuntos
Angiopoietina-1/antagonistas & inibidores , Angiopoietina-2/antagonistas & inibidores , Humor Aquoso/metabolismo , Glaucoma/fisiopatologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Animais , Anticorpos/farmacologia , Pressão Intraocular , Primatas , Fator A de Crescimento do Endotélio Vascular/fisiologia
5.
MAbs ; 9(6): 959-967, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28585908

RESUMO

Monoclonal antibodies developed for therapeutic or diagnostic purposes need to demonstrate highly defined binding specificity profiles. Engineering of an antibody to enhance or reduce binding to related antigens is often needed to achieve the desired biologic activity without safety concern. Here, we describe a deep sequencing-aided engineering strategy to fine-tune the specificity of an angiopoietin-2 (Ang2)/vascular endothelial growth factor (VEGF) dual action Fab, 5A12.1 for the treatment of age-related macular degeneration. This antibody utilizes overlapping complementarity-determining region (CDR) sites for dual Ang2/VEGF interaction with KD in the sub-nanomolar range. However, it also exhibits significant (KD of 4 nM) binding to angiopoietin-1, which has high sequence identity with Ang2. We generated a large phage-displayed library of 5A12.1 Fab variants with all possible single mutations in the 6 CDRs. By tracking the change of prevalence of each mutation during various selection conditions, we identified 35 mutations predicted to decrease the affinity for Ang1 while maintaining the affinity for Ang2 and VEGF. We confirmed the specificity profiles for 25 of these single mutations as Fab protein. Structural analysis showed that some of the Fab mutations cluster near a potential Ang1/2 epitope residue that differs in the 2 proteins, while others are up to 15 Å away from the antigen-binding site and likely influence the binding interaction remotely. The approach presented here provides a robust and efficient method for specificity engineering that does not require prior knowledge of the antigen antibody interaction and can be broadly applied to antibody specificity engineering projects.

6.
Biochem J ; 390(Pt 3): 769-76, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15910283

RESUMO

Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate the PhoP/PhoQ phosphorylation cascade modulating the transcription of PhoP-regulated genes. In contrast, high concentrations of extracellular Mg2+ stimulate the dephosphorylation of the response regulator PhoP by the PhoQ kinase sensor. In the present study, we report the purification and functional reconstitution of PhoQ(His), a PhoQ variant with a C-terminal His tag, into Escherichia coli liposomes. The functionality of PhoQ(His) was essentially similar to that of PhoQ as shown in vivo and in vitro. Purified PhoQ(His) was inserted into liposomes in a unidirectional orientation, with the sensory domain facing the lumen and the catalytic domain facing the extraluminal environment. Reconstituted PhoQ(His) exhibited all the catalytic activities that have been described for histidine kinase sensors. Reconstituted PhoQ(His) was capable of autokinase activity when incubated in the presence of Mg2+-ATP. The phosphoryl group could be transferred from reconstituted PhoQ(His) to PhoP. Reconstituted PhoQ(His) catalysed the dephosphorylation of phospho-PhoP and this activity was stimulated by the addition of extraluminal ADP.


Assuntos
Proteínas de Bactérias/metabolismo , Proteolipídeos/metabolismo , Salmonella typhimurium/enzimologia , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Expressão Gênica , Cloreto de Magnésio , Fosforilação , Proteolipídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética
7.
Invest Ophthalmol Vis Sci ; 56(9): 5390-400, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26275136

RESUMO

PURPOSE: To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody. METHODS: Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship. RESULTS: After IVT injection, differences in vitreal half-life observed across all molecules ranged between 3.2 and 5.2 days. Modification or elimination of the fragment crystallizable (Fc) region reduced serum half-life from 9 days for the IgG to 5 days for the neonatal Fc receptor (FcRn) null mAb, to 3.1 to 3.4 days for the other formats. The F(ab')2 was the optimal format for ocular therapeutics with comparable vitreal half-life to full-length antibodies, but with minimized systemic exposure. Concomitantly, the consistency among mathematical model predictions and observed data validated the model for future PK predictions. In addition, we showed a novel design to develop bispecific antibodies, here with activity targeting multiple angiogenesis pathways. CONCLUSIONS: We demonstrated that protein molecular weight and Fc region do not play a critical role in ocular PK, as they do systemically. Moreover, the mathematical model supports the selection of the "ideal therapeutic" by predicting ocular and systemic PK of any antibody format for any dose regimen. These findings have important implications for the design and selection of ocular therapeutics according to treatment needs, such as maximizing ocular half-life and minimizing systemic exposure.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos/imunologia , Desenho de Fármacos , Oftalmopatias/tratamento farmacológico , Olho/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Afinidade de Anticorpos , Oftalmopatias/imunologia , Oftalmopatias/metabolismo , Injeções Intravítreas , Masculino , Ligação Proteica , Coelhos
8.
Curr Drug Targets ; 13(3): 338-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22206256

RESUMO

Type III Secretion Systems (T3SSs) are highly organized multi-protein nanomachines which translocate effector proteins from the bacterial cytosol directly into host cells. These systems are required for the pathogenesis of a wide array of Gram-negative bacterial pathogens, and thus have attracted attention as potential antibacterial drug targets. A decade of research has enabled the identification of natural products, conventional small molecule drug-like structures, and proteins that inhibit T3SSs. The mechanism(s) of action and molecular target(s) of the majority of these inhibitors remain to be determined. At the same time, structural biology methods are providing an increasingly detailed picture of the functional arrangement of the T3SS component proteins. The confluence of these two research areas may ultimately identify non-classical drug targets and facilitate the development of novel therapeutics.


Assuntos
Antibacterianos/metabolismo , Sistemas de Liberação de Medicamentos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Humanos , Sistemas de Secreção Tipo III
9.
mBio ; 1(3)2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20824104

RESUMO

The type III secretion system (T3SS) is an interspecies protein transport machine that plays a major role in interactions of Gram-negative bacteria with animals and plants by delivering bacterial effector proteins into host cells. T3SSs span both membranes of Gram-negative bacteria by forming a structure of connected oligomeric rings termed the needle complex (NC). Here, the localization of subunits in the Salmonella enterica serovar Typhimurium T3SS NC were probed via mass spectrometry-assisted identification of chemical cross-links in intact NC preparations. Cross-links between amino acids near the amino terminus of the outer membrane ring component InvG and the carboxyl terminus of the inner membrane ring component PrgH and between the two inner membrane components PrgH and PrgK allowed for spatial localization of the three ring components within the electron density map structures of NCs. Mutational and biochemical analysis demonstrated that the amino terminus of InvG and the carboxyl terminus of PrgH play a critical role in the assembly and function of the T3SS apparatus. Analysis of an InvG mutant indicates that the structure of the InvG oligomer can affect the switching of the T3SS substrate to translocon and effector components. This study provides insights into how structural organization of needle complex base components promotes T3SS assembly and function.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Salmonella typhimurium/química , Salmonella typhimurium/genética
10.
Nat Struct Mol Biol ; 16(5): 468-76, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19396170

RESUMO

The type III secretion system (T3SS) is a macromolecular 'injectisome' that allows bacterial pathogens to transport virulence proteins into the eukaryotic host cell. This macromolecular complex is composed of connected ring-like structures that span both bacterial membranes. The crystal structures of the periplasmic domain of the outer membrane secretin EscC and the inner membrane protein PrgH reveal the conservation of a modular fold among the three proteins that form the outer membrane and inner membrane rings of the T3SS. This leads to the hypothesis that this conserved fold provides a common ring-building motif that allows for the assembly of the variably sized outer membrane and inner membrane rings characteristic of the T3SS. Using an integrated structural and experimental approach, we generated ring models for the periplasmic domain of EscC and placed them in the context of the assembled T3SS, providing evidence for direct interaction between the outer membrane and inner membrane ring components and an unprecedented span of the outer membrane secretin.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Periplasma/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Secretina/química , Secretina/metabolismo , Relação Estrutura-Atividade
11.
Cell Host Microbe ; 1(2): 85-7, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-18005684

RESUMO

Bacteria sense and respond to their environment, enabling adaptation to diverse niches, including multicellular eukaryotes. In this issue of Cell Host & Microbe, Torres et al. describe how the bacterium Staphylococcus aureus responds to heme as a molecular marker of the mammalian host environment. It is likely that mechanisms for sensing such markers evolved from systems that recognized cues present in microbial communities before the emergence of eukaryotes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Meio Ambiente , Bactérias/patogenicidade , Evolução Biológica , Heme/fisiologia , Staphylococcus aureus/patogenicidade , Virulência
12.
Immunol Rev ; 219: 55-65, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17850481

RESUMO

Salmonella enterica is a facultative intracellular pathogen that replicates within macrophages. The interaction of this pathogen with mammalian cells is a complex process involving hundreds of bacterial products that are sensed by and alter mammalian hosts. Numerous bacterial genes and their protein products have been identified that are required for Salmonella to resist killing by host innate immunity and to modify host processes. Many of these genes are regulated by a specific bacterial sensor, the PhoQ protein, which responds to the acidified phagosome environment. PhoQ is a sensor histidine kinase, which when activated in vivo within acidified macrophage phagosomes, regulates cell surface modifications that promote resistance to antimicrobial peptides and oxidative stress, alter the phagosome to promote intracellular survival, and reduce innate immune recognition. In this review, we discuss mechanisms by which Salmonella interacts with macrophages and focus in detail on recent reports describing the role of antimicrobial peptides and pH in PhoQ activation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Infecções por Salmonella/imunologia , Salmonella/metabolismo , Animais , Proteínas de Bactérias/química , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata , Viabilidade Microbiana , Fagocitose , Fagossomos/metabolismo , Fagossomos/microbiologia , Salmonella/fisiologia , Infecções por Salmonella/microbiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia
13.
Cell ; 122(3): 461-72, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16096064

RESUMO

PhoQ is a membrane bound sensor kinase important for the pathogenesis of a number of Gram-negative bacterial species. PhoQ and its cognate response regulator PhoP constitute a signal-transduction cascade that controls inducible resistance to host antimicrobial peptides. We show that enzymatic activity of Salmonella typhimurium PhoQ is directly activated by antimicrobial peptides. A highly acidic surface of the PhoQ sensor domain participates in both divalent-cation and antimicrobial-peptide binding as a first step in signal transduction across the bacterial membrane. Identification of PhoQ signaling mutants, binding studies with the PhoQ sensor domain, and structural analysis of this domain can be incorporated into a model in which antimicrobial peptides displace divalent cations from PhoQ metal binding sites to initiate signal transduction. Our findings reveal a molecular mechanism by which bacteria sense small innate immune molecules to initiate a transcriptional program that promotes bacterial virulence.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/imunologia , Proteínas Quinases/imunologia , Salmonella typhimurium/imunologia , Adaptação Fisiológica/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Humanos , Magnésio/imunologia , Modelos Biológicos , Ligação Proteica , Conformação Proteica , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/genética , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Transdução de Sinais/imunologia , Fatores de Tempo , Transcrição Gênica/genética
14.
J Bacteriol ; 185(6): 1935-41, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618457

RESUMO

The PhoP/PhoQ two-component regulatory system of Salmonella enterica serovar Typhimurium plays an essential role in controlling virulence by mediating the adaptation to Mg(2+) depletion. The pho-24 allele of phoQ harbors a single amino acid substitution (T48I) in the periplasmic domain of the PhoQ histidine kinase sensor. This mutation has been shown to increase net phosphorylation of the PhoP response regulator. We analyzed the effect on signaling by PhoP/PhoQ of various amino acid substitutions at this position (PhoQ-T48X [X = A, S, V, I, or L]). Mutations T48V, T48I, and T48L were found to affect signaling by PhoP/PhoQ both in vivo and in vitro. Mutations PhoQ-T48V and PhoQ-T48I increased both the expression of the mgtA::lacZ transcriptional fusion and the net phosphorylation of PhoP, conferring to cells a PhoP constitutively active phenotype. In contrast, mutation PhoQ-T48L barely responded to changes in the concentration of external Mg(2+), in vivo and in vitro, conferring to cells a PhoP constitutively inactive phenotype. By analyzing in vitro the individual catalytic activities of the PhoQ-T48X sensors, we found that the PhoP constitutively active phenotype observed for the PhoQ-T48V and PhoQ-T48I proteins is solely due to decreased phosphatase activity. In contrast, the PhoP constitutively inactive phenotype observed for the PhoQ-T48L mutant resulted from both decreased autokinase activity and increased phosphatase activity. Our data are consistent with a model in which the residue at position 48 of PhoQ contributes to a conformational switch between kinase- and phosphatase-dominant states.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/química , Salmonella typhimurium/enzimologia , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase , Magnésio/metabolismo , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa