RESUMO
Endurance exercise begun with reduced muscle glycogen stores seems to potentiate skeletal muscle protein abundance and gene expression. However, it is unknown whether this greater signaling responses is due to performing two exercise sessions in close proximity-as a first exercise session is necessary to reduce the muscle glycogen stores. In the present study, we manipulated the recovery duration between a first muscle glycogen-depleting exercise and a second exercise session, such that the second exercise session started with reduced muscle glycogen in both approaches but was performed either 2 or 15 hours after the first exercise session (so-called "twice-a-day" and "once-daily" approaches, respectively). We found that exercise twice-a-day increased the nuclear abundance of transcription factor EB (TFEB) and nuclear factor of activated T cells (NFAT) and potentiated the transcription of peroxisome proliferator-activated receptor-É£ coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor-alpha (PPARα), and peroxisome proliferator-activated receptor beta/delta (PPARß/δ) genes, in comparison with the once-daily exercise. These results suggest that part of the elevated molecular signaling reported with previous "train-low" approaches might be attributed to performing two exercise sessions in close proximity. The twice-a-day approach might be an effective strategy to induce adaptations related to mitochondrial biogenesis and fat oxidation.
Assuntos
Biomarcadores/metabolismo , Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adaptação Fisiológica/fisiologia , Adulto , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Estudos Cross-Over , Glicogênio/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fatores de Transcrição NFATC/metabolismo , Biogênese de Organelas , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismoRESUMO
AIMS: The goal of this study was to evaluate the performance of the InspironTM coronary stent (Scitech Medical™, Goiás, Brazil). The InspironTM sirolimus-eluting stent uses an ultrathin L-605 cobalt-chromium alloy with a 75 µm strut thickness platform coated with an abluminal biodegradable polymer. The polymer is eliminated from the body through the tricarboxylic acid cycle in 6-9 months, releasing 80% of the drug within 30 days after its deployment. METHODS: It was a prospective, single-center registry. To represent clinical practice, all patients undergoing percutaneous coronary intervention were included in this registry. There were no exclusion criteria. Clinical follow-ups were performed at twelve months. The endpoints were the occurrence of all-cause death, definite stent thrombosis, and new revascularization. RESULTS: Between November 2017 and May 2019, 790 patients were included (1067 lesions). The mean age was 60.42 ± 14.94 years, and 74.7% presented with acute coronary syndrome. Diabetes mellitus was present in 43.9% of patients, and previous myocardial infarction and previous percutaneous coronary intervention were present in 17.9% and 11.3%, respectively. Angiographic success was achieved in 99.1%. The incidence of all-cause death was 11.5% (6.2% in-hospital and 5.3% in the follow-up) and definitive stent thrombosis was 0.2%. New revascularization was performed in only 5.8% (target lesion revascularization: 2.2%; progression of disease in another lesion: 3.6%). Based on the multivariate regression analysis, only chronic renal failure was an independent predictor of adverse events (OR: 3.3; 95% CI: 1.22-8.92). CONCLUSION: The result of this single-center registry demonstrates the safety and excellent performance of the InspironTM stent in daily clinical practice with a low rate of adverse cardiac events.
Assuntos
Síndrome Coronariana Aguda , Plásticos Biodegradáveis/farmacologia , Ligas de Cromo/farmacologia , Stents Farmacológicos/efeitos adversos , Intervenção Coronária Percutânea , Sirolimo/farmacologia , Síndrome Coronariana Aguda/mortalidade , Síndrome Coronariana Aguda/cirurgia , Brasil/epidemiologia , Materiais Revestidos Biocompatíveis/farmacologia , Reestenose Coronária/epidemiologia , Reestenose Coronária/etiologia , Reestenose Coronária/cirurgia , Feminino , Humanos , Imunossupressores/farmacologia , Masculino , Pessoa de Meia-Idade , Avaliação de Processos e Resultados em Cuidados de Saúde , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/instrumentação , Intervenção Coronária Percutânea/métodos , Estudos Prospectivos , Desenho de Prótese , Sistema de Registros/estatística & dados numéricos , Reoperação/estatística & dados numéricosRESUMO
Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.
Assuntos
Adaptação Fisiológica , Treino Aeróbico , Treinamento Intervalado de Alta Intensidade , Mitocôndrias Musculares/enzimologia , Biogênese de Organelas , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Adulto , Respiração Celular , Citrato (si)-Sintase/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Mitocôndrias Musculares/ultraestrutura , Adulto JovemRESUMO
PURPOSE: The assumption that the curvature constant (W') of the power-duration relationship represents anaerobic work capacity is a controversial, unresolved question. We investigated if caffeine ingestion could increase total work done above critical power (CP), and if this would be accompanied by greater anaerobic energy expenditure and by an enhanced maintenance of maximal oxidative metabolic rate. METHODS: Nine men (26.6 ± 5.3 yr, VËO2max 40.6 ± 5.8 mL·kg·min) cycled until exhaustion at different exercise intensities on different days to determine the CP and W'. On separated days, participants cycled until exhaustion in the severe-intensity domain (136% ± 7% of CP) after ingesting either caffeine (5 mg·kg body mass) or a placebo. RESULTS: Time to exhaustion was 34% longer with caffeine compared with placebo, and this was accompanied by a greater work done above CP (23.7 ± 5.7 vs 17.5 ± 3.6 kJ; 130% ± 30% vs 95% ± 14% of W', P < 0.01). Caffeine increased the aerobic energy expenditure (296.4 ± 91.0 vs 210.2 ± 71.9 kJ, P < 0.01), but not anaerobic lactic, anaerobic alactic, and total anaerobic (lactic + alactic) energy expenditure. The end values of heart rate and ventilation were higher with caffeine, but the VËO2 end was similar between conditions and was not different from VËO2max. Caffeine did not change time to reach VËO2max but increased time maintained at VËO2max (199.3 ± 105.9 vs 111.9 ± 87.1 s, P < 0.05). CONCLUSIONS: Caffeine increased total work done above CP, but this was not associated with greater anaerobic work. Rather, this was associated with a higher tolerance to maintain exercise at maximal oxidative metabolic rate.
Assuntos
Cafeína/farmacologia , Metabolismo Energético , Exercício Físico/fisiologia , Consumo de Oxigênio , Adulto , Teste de Esforço , Tolerância ao Exercício , Humanos , Ácido Láctico/sangue , Masculino , Adulto JovemRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0179457.].
RESUMO
We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC.