Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 140(5): 652-65, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20211135

RESUMO

MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA's seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/metabolismo , Animais , Crise Blástica , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo
2.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995507

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Diferenciação Celular , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Fator de Transcrição AP-1/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108786

RESUMO

Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.


Assuntos
Artrite Reumatoide , Receptores de IgG , Humanos , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas do Tecido Nervoso/metabolismo
4.
J Immunol ; 204(7): 1988-1997, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094205

RESUMO

TLRs, a family of membrane-bound pattern recognition receptors found on innate immune cells, have been well studied in the context of cancer therapy. Activation of these receptors has been shown to induce inflammatory anticancer events, including differentiation and apoptosis, across a wide variety of malignancies. In contrast, intracellular pattern recognition receptors such as NOD-like receptors have been minimally studied. NOD2 is a member of the NOD-like receptor family that initiates inflammatory signaling in response to the bacterial motif muramyl dipeptide. In this study, we examined the influence of NOD2 in human acute myeloid leukemia (AML) cells, demonstrating that IFN-γ treatment upregulated the expression of NOD2 signaling pathway members SLC15A3 and SLC15A4, downstream signaling kinase RIPK2, and the NOD2 receptor itself. This priming allowed for effective induction of caspase-1-dependent cell death upon treatment with muramyl tripeptide phosphatidylethanolamine (MTP-PE), a synthetic ligand for NOD2. Furthermore, the combination of MTP-PE and IFN-γ on AML blasts generated an inflammatory cytokine profile and activated NK cells. In a murine model of AML, dual treatment with MTP-PE and IFN-γ led to a significant increase in mature CD27- CD11b+ NK cells as well as a significant reduction in disease burden and extended survival. These results suggest that NOD2 activation, primed by IFN-γ, may provide a novel therapeutic option for AML.


Assuntos
Apoptose/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
5.
J Immunol ; 203(12): 3216-3224, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732534

RESUMO

Monocytes and macrophages express FcγR that engage IgG immune complexes such as Ab-opsonized pathogens or cancer cells to destroy them by various mechanisms, including phagocytosis. FcγR-mediated phagocytosis is regulated by the concerted actions of activating FcγR and inhibitory receptors, such as FcγRIIb and SIRPα. In this study, we report that another ITIM-containing receptor, PECAM1/CD31, regulates FcγR function and is itself regulated by FcγR activation. First, quantitative RT-PCR and flow cytometry analyses revealed that human monocyte FcγR activation leads to a significant downregulation of CD31 expression, both at the message level and at surface expression, mainly mediated through FcγRIIa. Interestingly, the kinetics of downregulation between the two varied, with surface expression reducing earlier than the message. Experiments to analyze the mechanism behind this discrepancy revealed that the loss of surface expression was because of internalization, which depended predominantly on the PI3 kinase pathway and was independent of FcγR internalization. Finally, functional analyses showed that the downregulation of CD31 expression in monocytes by small interfering RNA enhanced FcγR-mediated phagocytic ability but have little effect on cytokine production. Together, these results suggest that CD31 acts as a checkpoint receptor that could be targeted to enhance FcγR functions in Ab-mediated therapies.


Assuntos
Monócitos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Doadores de Sangue , Citocinas/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Imunoglobulina G/metabolismo , Fagocitose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia
6.
Int Immunol ; 30(8): 375-383, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29868798

RESUMO

Acute myeloid leukemia (AML) remains a significant health problem, with poor outcomes despite chemotherapy and bone marrow transplants. Although one form of AML, acute promyelocytic leukemia (APL), is successfully treated with all-trans retinoic acid (ATRA), this drug is seemingly ineffective against all other forms of AML. Here, we show that ATRA up-regulates CD38 expression on AML blasts to sufficient levels that promote antibody-mediated fratricide following the addition of anti-CD38 daratumumab (DARA). The combination of ATRA plus DARA induced Fc-dependent conjugate formation and cytotoxicity among AML blasts in vitro. Combination treatment also led to reduction in tumor volume and resulted in increased overall survival in murine engraftment models of AML. These results suggest that, although ATRA does not induce differentiation of non-APL, it may be effective as a therapy in conjunction with DARA.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quimioterapia Combinada , Humanos , Leucemia Mieloide Aguda/patologia , Tretinoína/química , Tretinoína/uso terapêutico , Células Tumorais Cultivadas
7.
J Biol Chem ; 291(49): 25656-25666, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27780867

RESUMO

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid lineage blasts. Due to its heterogeneity and to the high rate of acquired drug resistance and relapse, new treatment strategies are needed. Here, we demonstrate that IFNγ promotes AML blasts to act as effector cells within the context of antibody therapy. Treatment with IFNγ drove AML blasts toward a more differentiated state, wherein they showed increased expression of the M1-related markers HLA-DR and CD86, as well as of FcγRI, which mediates effector responses to therapeutic antibodies. Importantly, IFNγ was able to up-regulate CD38, the target of the therapeutic antibody daratumumab. Because the antigen (CD38) and effector receptor (FcγRI) were both simultaneously up-regulated on the AML blasts, we tested whether IFNγ treatment of the AML cell lines THP-1 and MV4-11 could stimulate them to target one another after the addition of daratumumab. Results showed that IFNγ significantly increased daratumumab-mediated cytotoxicity, as measured both by 51Cr release and lactate dehydrogenase release assays. We also found that the combination of IFNγ and activation of FcγR led to the release of granzyme B by AML cells. Finally, using a murine NSG model of subcutaneous AML, we found that treatment with IFNγ plus daratumumab significantly attenuated tumor growth. Taken together, these studies show a novel mechanism of daratumumab-mediated killing and a possible new therapeutic strategy for AML.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxinas/farmacologia , Interferon gama/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Granzimas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Receptores de IgG/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Blood ; 125(17): 2689-92, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25716206

RESUMO

The prognosis of acute myeloid leukemia (AML) is poor, highlighting the need for novel treatments. Hypomethylating agents, including decitabine are used to treat elderly AML patients with relative success. Targeting nuclear export receptor (exportin 1 [XPO1]) is a novel approach to restore tumor suppressor (TS) function in AML. Here, we show that sequential treatment of AML blasts with decitabine followed by selinexor (XPO1 inhibitor) enhances the antileukemic effects of selinexor. These effects could be mediated by the re-expression of a subset of TSs (CDKN1A and FOXO3A) that are epigenetically silenced via DNA methylation, and cytoplasmic-nuclear trafficking is regulated by XPO1. We observed a significant upregulation of CDKN1A and FOXO3A in decitabine- versus control-treated cells. Sequential treatment of decitabine followed by selinexor in an MV4-11 xenograft model significantly improved survival compared with selinexor alone. On the basis of these preclinical results, a phase 1 clinical trial of decitabine followed by selinexor in elderly patients with AML has been initiated.


Assuntos
Antineoplásicos/uso terapêutico , Azacitidina/análogos & derivados , Hidrazinas/uso terapêutico , Carioferinas/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Triazóis/uso terapêutico , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Decitabina , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Humanos , Carioferinas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Proteína Exportina 1
9.
PLoS Genet ; 9(3): e1003311, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505378

RESUMO

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ß-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Assuntos
Neoplasias da Mama , Proteína 1 de Resposta de Crescimento Precoce , Receptor alfa de Estrogênio , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Blood ; 122(11): 1923-34, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23926298

RESUMO

FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)-activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2(V617F) oncogene. PP2A inactivation occurs in a Jak2(V617F) dose/kinase-dependent manner through the PI-3Kγ-PKC-induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2(V617F) inactivation/downregulation and impairs clonogenic potential of Jak2(V617F) cell lines and PV but not normal CD34(+) progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2(V617F) leukemic mice without adverse effects. Mechanistically, we show that in Jak2(V617F) cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2(V617F) also utilizes an alternative sphingosine kinase-1-mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET-mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2(V617F) MPNs.


Assuntos
Janus Quinase 2/metabolismo , Leucemia/tratamento farmacológico , Propilenoglicóis/farmacologia , Proteína Fosfatase 2/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase , Proteínas de Ligação a DNA , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Fingolimode , Chaperonas de Histonas , Humanos , Immunoblotting , Imunossupressores/farmacologia , Janus Quinase 2/genética , Estimativa de Kaplan-Meier , Leucemia/genética , Leucemia/patologia , Camundongos , Camundongos SCID , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Fosfatase 2/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa