Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Exp Eye Res ; 235: 109627, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619829

RESUMO

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Assuntos
Traumatismos do Nervo Óptico , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/farmacologia , Células Ganglionares da Retina/metabolismo , Gliose/metabolismo , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Nervo Óptico/metabolismo , Compressão Nervosa/métodos
2.
Glia ; 68(12): 2705-2724, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32645245

RESUMO

Glaucoma is a degenerative disease that causes irreversible loss of vision and is characterized by retinal ganglion cell (RGC) loss. Others and we have demonstrated that chronic neuroinflammation mediated by reactive microglial cells plays a role in glaucomatous pathology. Exosomes are extracellular vesicles released by most cells, including microglia, that mediate intercellular communication. The role of microglial exosomes in glaucomatous degeneration remains unknown. Taking the prominent role of microglial exosomes in brain neurodegenerative diseases, we studied the contribution of microglial-derived exosomes to the inflammatory response in experimental glaucoma. Microglial cells were exposed to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure, the main risk factor for glaucoma. Naïve microglia (BV-2 cells or retinal microglia) were exposed to exosomes derived from BV-2 cells under EHP conditions (BV-Exo-EHP) or cultured in control pressure (BV-Exo-Control). We found that BV-Exo-EHP increased the production of pro-inflammatory cytokines, promoted retinal microglia motility, phagocytic efficiency, and proliferation. Furthermore, the incubation of primary retinal neural cell cultures with BV-Exo-EHP increased cell death and the production of reactive oxygen species. Exosomes derived from retinal microglia (MG-Exo-Control or MG-Exo-EHP) were injected in the vitreous of C57BL/6J mice. MG-Exo-EHP sustained activation of retinal microglia, mediated cell death, and impacted RGC number. Herein, we show that exosomes derived from retinal microglia have an autocrine function and propagate the inflammatory signal in conditions of elevated pressure, contributing to retinal degeneration in glaucomatous conditions.


Assuntos
Exossomos , Glaucoma , Animais , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Células Ganglionares da Retina
3.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007835

RESUMO

Glaucoma is a progressive chronic retinal degenerative disease and a leading cause of global irreversible blindness, characterized by optic nerve damage and retinal ganglion cell (RGC) death. Elevated intraocular pressure (IOP) is a main risk factor of glaucoma. Neuroinflammation plays an important role in glaucoma. We have been demonstrating that elevated pressure triggers microglia reactivity that contribute to the loss of RGCs. Adenosine, acting on adenosine receptors, is a crucial modulator of microglia phenotype. Microglia express all adenosine receptors. Previously, we demonstrated that the activation of adenosine A3 receptor (A3R) affords protection to the retina, including RGCs, unveiling the possibility for a new strategy for glaucoma treatment. Since microglial cells express A3R, we now studied the ability of a selective A3R agonist (2-Cl-IB-MECA) in controlling microglia reactivity induced by elevated hydrostatic pressure (EHP), used to mimic elevated IOP. The activation of A3R reduced EHP-induced inducible nitric oxide synthase (iNOS) expression, microglia migration and phagocytosis in BV-2 cells. In retinal microglia, proliferation and phagocytosis elicited by EHP were also decreased by A3R activation. This work demonstrates that 2-Cl-IB-MECA, the selective agonist of A3R, is able to hinder microglia reactivity, suggesting that A3R agonists could afford protection against glaucomatous degeneration through the control of neuroinflammation.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Glaucoma/tratamento farmacológico , Receptor A3 de Adenosina/genética , Adenosina/genética , Adenosina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glaucoma/genética , Glaucoma/patologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/patologia , Fagocitose/efeitos dos fármacos , Ratos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia
4.
Int J Mol Sci ; 21(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218163

RESUMO

The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.


Assuntos
Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/citologia , Animais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Progressão da Doença , Humanos , Células Ganglionares da Retina/efeitos dos fármacos
5.
Glia ; 67(5): 896-914, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667095

RESUMO

Glaucoma is a retinal degenerative disease characterized by the loss of retinal ganglion cells and damage of the optic nerve. Recently, we demonstrated that antagonists of adenosine A2A receptor (A2A R) control retinal inflammation and afford protection to rat retinal cells in glaucoma models. However, the precise contribution of microglia to retinal injury was not addressed, as well as the effect of A2A R blockade directly in microglia. Here we show that blocking microglial A2A R prevents microglial cell response to elevated pressure and it is sufficient to protect retinal cells from elevated pressure-induced death. The A2A R antagonist SCH 58261 or the knockdown of A2A R expression with siRNA in microglial cells prevented the increase in microglia response to elevated hydrostatic pressure. Furthermore, in retinal neural cell cultures, the A2A R antagonist decreased microglia proliferation, as well as the expression and release of pro-inflammatory mediators. Microglia ablation prevented neural cell death triggered by elevated pressure. The A2A R blockade recapitulated the effects of microglia depletion, suggesting that blocking A2A R in microglia is able to control neurodegeneration in glaucoma-like conditions. Importantly, in human organotypic retinal cultures, A2A R blockade prevented the increase in reactive oxygen species and the morphological alterations in microglia triggered by elevated pressure. These findings place microglia as the main contributors for retinal cell death during elevated pressure and identify microglial A2A R as a therapeutic target to control retinal neuroinflammation and prevent neural apoptosis elicited by elevated pressure.


Assuntos
Inflamação/metabolismo , Microglia/metabolismo , Neurônios/fisiologia , Estresse Oxidativo/fisiologia , Receptor A2A de Adenosina/metabolismo , Retina/citologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adulto , Idoso , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/tratamento farmacológico , Masculino , Microglia/efeitos dos fármacos , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Triazóis/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo
6.
Mol Vis ; 24: 353-366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853770

RESUMO

Purpose: Diabetic retinopathy is a neurovascular disease characterized by increased permeability of the blood-retinal barrier, changes in the neural components of the retina, and low-grade chronic inflammation. Diabetic retinopathy is a major complication of diabetes; however, the impact of a prediabetic state on the retina remains to be elucidated. The aim of this study was to assess possible early retinal changes in prediabetic rats, by evaluating changes in the integrity of the blood-retinal barrier, the retinal structure, neural markers, and inflammatory mediators. Methods: Several parameters were analyzed in the retinas of Wistar rats that drank high sucrose (HSu; 35% sucrose solution during 9 weeks, the prediabetic animal model) and were compared with those of age-matched controls. The permeability of the blood-retinal barrier was assessed with the Evans blue assay, and the content of the tight junction proteins and neural markers with western blotting. Optical coherence tomography was used to evaluate retinal thickness. Cell loss at the ganglion cell layer was assessed with terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay and by evaluating the immunoreactivity of the Brn3a transcription factor. To assess retinal neuroinflammation, the mRNA expression and protein levels of inducible nitric oxide synthase isoform (iNOS), interleukin-1 beta (IL-1ß), and tumor necrosis factor (TNF) were evaluated. Iba1 and MHC-II immunoreactivity and translocator protein (TSPO) mRNA levels were assessed to study the microglial number and activation state. Results: The thickness of the inner retinal layers of the HSu-treated animals decreased. Nevertheless, no apoptotic cells were observed, and no changes in retinal neural markers were detected in the retinas of the HSu-treated animals. No changes were detected in the permeability of the blood-retinal barrier, as well as the tight junction protein content between the HSu-treated rats and the controls. In addition, the inflammatory parameters remained unchanged in the retina despite the tendency for an increase in the number of retinal microglial cells. Conclusions: In a prediabetic rat model, the retinal structure is affected by the thinning of the inner layers, without overt vascular and inflammatory alterations. The results suggest neuronal dysfunction (thinning of the inner retina) that may precede or anticipate the vascular and inflammatory changes. Subtle structural changes might be viewed as early disturbances in an evolving disease, suggesting that preventive strategies (such as the modification of diet habits) could be applied at this stage, before the progression toward irreversible dysfunction and damage to the retina.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Estado Pré-Diabético/diagnóstico , Transdução de Sinais/efeitos dos fármacos , Sacarose/farmacologia , Animais , Barreira Hematorretiniana/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Azul Evans/química , Regulação da Expressão Gênica , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estado Pré-Diabético/induzido quimicamente , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/ultraestrutura , Tomografia de Coerência Óptica , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3A/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Ophthalmic Res ; 57(2): 77-86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27618367

RESUMO

Glaucoma, a leading cause of blindness worldwide, is a degenerative disease characterized by retinal ganglion cell (RGC) loss and optic nerve atrophy. Elevated intraocular pressure (IOP) is a main risk factor for onset and progression of the disease. Since increased IOP is the only modifiable risk factor, relevant models for glaucoma would comprise RGC and optic nerve damage triggered by ocular hypertension. Animal models of glaucoma have greatly contributed to the understanding of the molecular mechanisms of this pathology, and they have also facilitated the development of new pharmacological interventions. Although animal models of glaucoma have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. There is a recognized demand for in vitro models that can replace or reduce the need for animal experiments. Several in vitro models have emerged as a great opportunity in the field of glaucoma research, helping to clarify the mechanisms involved in disease progression. Several types of equipment have been developed to expose cells and tissue cultures to elevated pressures. Herein, we discuss the methodology used to increase pressure, the main findings, and the relevance of in vitro models for the study of the pathophysiology of glaucoma.


Assuntos
Cegueira/etiologia , Glaucoma/complicações , Pressão Intraocular , Animais , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Humanos , Fatores de Risco
8.
Ophthalmic Res ; 58(3): 150-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28793297

RESUMO

Calcium dobesilate (CaD) has been prescribed to some patients in the early stages of diabetic retinopathy to delay its progression. We previously reported that the treatment of diabetic animals (4 weeks of diabetes) with CaD, during the last 10 days of diabetes, prevents blood-retinal barrier breakdown. Here, we aimed to investigate whether later treatment of diabetic rats with CaD would reverse inflammatory processes in the retina. Diabetes was induced with streptozotocin, and 6 weeks after diabetes onset, CaD (100 mg/kg/day) was administered for 2 weeks. The treatment with CaD significantly increased glial fibrillary acidic protein (GFAP) levels in the retina of nondiabetic animals (138.6 ± 12.8% of control) and enhanced the diabetes-induced increase in GFAP levels (174.8 ± 5.6% of control). In addition, CaD prevented the increase in mRNA and protein expression of tumor necrosis factor and interleukin-1ß, as well as the formation of oxidized carbonyl residues and the increase in nitrotyrosine immunoreactivity, particularly in the ganglion cell layer of diabetic animals. We demonstrate that the treatment of diabetic animals with CaD can reverse the established proinflammatory processes in the retina. These beneficial effects appear to be attributed, at least partially, to the antioxidant properties of CaD.


Assuntos
Dobesilato de Cálcio/farmacologia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/complicações , Retinopatia Diabética/prevenção & controle , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Retina/patologia , Animais , Apoptose/efeitos dos fármacos , Barreira Hematorretiniana/efeitos dos fármacos , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/metabolismo , Hemostáticos/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Ratos , Ratos Wistar , Retina/metabolismo
9.
Ophthalmic Res ; 55(4): 212-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959995

RESUMO

Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Cafeína/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Antagonistas do Receptor A2 de Adenosina/farmacologia , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Humanos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Retina/efeitos dos fármacos
10.
Glia ; 63(3): 497-511, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25421817

RESUMO

Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation.


Assuntos
Microglia/enzimologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Apoptose/fisiologia , Proteína Tirosina Quinase CSK , Linhagem Celular , Células Cultivadas , Galinhas , Gliose/enzimologia , Gliose/patologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Inflamação/enzimologia , Inflamação/patologia , Isquemia/enzimologia , Isquemia/patologia , Lipopolissacarídeos , Masculino , Camundongos , Microglia/patologia , Neurônios/fisiologia , Fagocitose/fisiologia , Ratos Wistar , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Neurônios Retinianos/patologia , Neurônios Retinianos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Quinases da Família src/metabolismo
11.
J Neuroinflammation ; 12: 115, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26054642

RESUMO

BACKGROUND: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a degenerative disease characterized by the loss of retinal ganglion cells (RGCs). There is clinical and experimental evidence that neuroinflammation is involved in the pathogenesis of glaucoma. Since the blockade of adenosine A2A receptor (A2AR) confers robust neuroprotection and controls microglia reactivity in the brain, we now investigated the ability of A2AR blockade to control the reactivity of microglia and neuroinflammation as well as RGC loss in retinal organotypic cultures exposed to elevated hydrostatic pressure (EHP) or lipopolysaccharide (LPS). METHODS: Retinal organotypic cultures were either incubated with LPS (3 µg/mL), to elicit a pro-inflammatory response, or exposed to EHP (+70 mmHg), to mimic increased IOP, for 4 or 24 h, in the presence or absence of the A2AR antagonist SCH 58261 (50 nM). A2AR expression, microglial reactivity and neuroinflammatory response were evaluated by immunohistochemistry, quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). RGC loss was assessed by immunohistochemistry. In order to investigate the contribution of pro-inflammatory mediators to RGC loss, the organotypic retinal cultures were incubated with rabbit anti-tumour necrosis factor (TNF) (2 µg/mL) and goat anti-interleukin-1ß (IL-1ß) (1 µg/mL) antibodies. RESULTS: We report that the A2AR antagonist (SCH 58261) prevented microglia reactivity, increase in pro-inflammatory mediators as well as RGC loss upon exposure to either LPS or EHP. Additionally, neutralization of TNF and IL-1ß prevented RGC loss induced by LPS or EHP. CONCLUSIONS: This work demonstrates that A2AR blockade confers neuroprotection to RGCs by controlling microglia-mediated retinal neuroinflammation and prompts the hypothesis that A2AR antagonists may be a novel therapeutic option to manage glaucomatous disorders.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Pressão Hidrostática/efeitos adversos , Inflamação/complicações , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/patologia , Animais , Apoptose/fisiologia , Glaucoma/tratamento farmacológico , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Modelos Animais , Óxido Nítrico/metabolismo , Técnicas de Cultura de Órgãos , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/fisiologia , Triazóis/farmacologia
12.
Exp Eye Res ; 140: 65-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297614

RESUMO

Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 µM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.


Assuntos
Neuroproteção/fisiologia , Receptor A3 de Adenosina/metabolismo , Degeneração Retiniana/prevenção & controle , Neurônios Retinianos/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Sobrevivência Celular , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Técnica Indireta de Fluorescência para Anticorpo , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Masculino , N-Metilaspartato/toxicidade , Traumatismos do Nervo Óptico/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Retina/efeitos dos fármacos , Retina/patologia , Degeneração Retiniana/metabolismo
13.
Ophthalmic Res ; 54(4): 204-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517861

RESUMO

Alzheimer's disease (AD) is the most common type of dementia worldwide; it is characterized by a progressive decline in cognitive functions and memory, resulting from synaptic and cell loss, and accompanied by a strong neuroinflammatory response. Besides the vast progress in the understanding of the pathophysiology of AD in the past decades, there is still no effective treatment. Moreover, the diagnosis occurs usually at an advanced stage of the disease, where the neurological damage has already occurred. The identification of biomarkers that would allow an early diagnosis of this disease is a major goal that would also help managing AD progression. Due to its cellular and physiological resemblances with the brain, the retina has long been regarded as a window to the brain. Several brain manifestations have been associated with retinal alterations. In AD patients, some structural and functional alterations in the retina can be associated with disease onset. However, only a few studies have focused on the alterations in retinal glial cells associated with AD. This review aims at giving an overview of the AD-associated retinal alterations, particularly in glial cells. The documented alterations in retinal glia will be discussed concerning their potential to predict the brain alterations occurring in AD.


Assuntos
Doença de Alzheimer/diagnóstico , Neuroglia/patologia , Neurônios Retinianos/patologia , Retinite/diagnóstico , Biomarcadores , Diagnóstico Precoce , Humanos
14.
Cell Biosci ; 14(1): 5, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183095

RESUMO

BACKGROUND: Glaucoma, a progressive neurodegenerative disease, is a leading cause of irreversible vision loss worldwide. This study aims to elucidate the critical role of Müller glia (MG) in the context of retinal ganglion cell (RGC) death, particularly focusing on the influence of peripheral MG sensitivity to high pressure (HP). METHODS: Co-cultures of porcine RGCs with MG were isolated from both the central and peripheral regions of pig retinas and subjected to both normal and HP conditions. Mass spectrometry analysis of the MG-conditioned medium was conducted to identify the proteins released by MG under all conditions. RESULTS: Peripheral MG were found to secrete a higher quantity of neuroprotective factors, effectively promoting RGC survival under normal physiological conditions. However, under HP conditions, co-cultures with peripheral MG exhibited impaired RGC survival. Moreover, under HP conditions, peripheral MG significantly upregulated the secretion of proteins associated with apoptosis, oxidative stress, and inflammation. CONCLUSIONS: This study provides robust evidence suggesting the involvement of MG in RGC death in glaucoma, thus paving the way for future therapeutic investigations.

16.
J Control Release ; 343: 469-481, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131370

RESUMO

Retinal ganglion cell (RGC) loss underlies several conditions which give rise to significant visual compromise, including glaucoma and ischaemic optic neuropathies. Neuroprotection of RGCs is a clinical well-defined unmet need in these diseases, and adenosine A3 receptor (A3R) activation emerges as a therapeutic pharmacological approach to protect RGCs. A porous biodegradable intraocular implant loaded with 2-Cl-IB-MECA (selective A3R agonist) was used as a strategy to protect RGCs. Drug-loaded PCL implants released 2-Cl-IB-MECA for an extended period and the released 2-Cl-IB-MECA limited glutamate-evoked calcium (Ca2+) rise in RGCs. Retinal thinning due to transient ischemia was not prevented by 2-Cl-IB-MECA-PCL implant. However, 2-Cl-IB-MECA-PCL implants decreased retinal cell death, promoted the survival of RGCs, preserved optic nerve structure and anterograde axonal transport. We further demonstrated that 2-Cl-IB-MECA-loaded PCL implants were able to enhance RGC function that was compromised by transient ischemia. Taking into consideration the beneficial effects afforded by 2-Cl-IB-MECA released from the PCL implant, this can be envisaged a good therapeutic strategy to protect RGCs.


Assuntos
Agonistas do Receptor A3 de Adenosina , Células Ganglionares da Retina , Agonistas do Receptor A3 de Adenosina/farmacologia , Humanos , Isquemia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Retina/metabolismo
17.
Biomolecules ; 11(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063832

RESUMO

Microglial cells are the neuroimmune competent cells of the central nervous system. In the adult, microglia are responsible for screening the neuronal parenchyma searching for alterations in homeostasis. Chronic neuroinflammation plays a role in neurodegenerative disease. Indeed, microglia-mediated neuroinflammation is involved in the onset and progression of several disorders in the brain and retina. Microglial cell reactivity occurs in an orchestrated manner and propagates across the neural parenchyma spreading the neuroinflammatory signal from cell to cell. Extracellular vesicles are important vehicles of intercellular communication and act as message carriers across boundaries. Extracellular vesicles can be subdivided in several categories according to their cellular origin (apoptotic bodies, microvesicles and exosomes), each presenting, different but sometimes overlapping functions in cell communication. Mounting evidence suggests a role for extracellular vesicles in regulating microglial cell action. Herein, we explore the role of microglial extracellular vesicles as vehicles for cell communication and the mechanisms that trigger their release. In this review we covered the role of microglial extracellular vesicles, focusing on apoptotic bodies, microvesicles and exosomes, in the context of neurodegeneration and the impact of these vesicles derived from other cells in microglial cell reactivity.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Vesículas Extracelulares/patologia , Humanos , Camundongos , Microglia/patologia , Doenças Neurodegenerativas/patologia
18.
Cells ; 9(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423062

RESUMO

The retina is a highly metabolically active tissue with high-level consumption of nutrients and oxygen. This high metabolic demand requires a properly developed and maintained vascular system. The retina is nourished by two systems: the central retinal artery that supplies the inner retina and the choriocapillaris that supplies the outer retina and retinal pigment epithelium (RPE). Pathological neovascularization, characterized by endothelial cell proliferation and new vessel formation, is a common hallmark in several retinal degenerative diseases, including age-related macular degeneration (AMD). A limited number of studies have suggested that microglia, the resident immune cells of the retina, have an important role not only in the pathology but also in the formation and physiology of the retinal vascular system. Here, we review the current knowledge on microglial interaction with the retinal vascular system under physiological and pathological conditions. To do so, we first highlight the role of microglial cells in the formation and maintenance of the retinal vasculature system. Thereafter, we discuss the molecular signaling mechanisms through which microglial cells contribute to the alterations in retinal and choroidal vasculatures and to the neovascularization in AMD.


Assuntos
Corioide/irrigação sanguínea , Degeneração Macular/patologia , Microglia/patologia , Retina/patologia , Animais , Corioide/patologia , Neovascularização de Coroide/patologia , Humanos , Modelos Biológicos
19.
Pharmacol Ther ; 210: 107513, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109489

RESUMO

Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.


Assuntos
Adenosina/metabolismo , Mediadores da Inflamação/metabolismo , Receptores Purinérgicos P1/metabolismo , Retina/metabolismo , Retinite/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Ligantes , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Retina/efeitos dos fármacos , Retina/imunologia , Retinite/tratamento farmacológico , Retinite/imunologia , Transdução de Sinais
20.
Cell Death Dis ; 11(5): 401, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461578

RESUMO

Glaucoma is a progressive chronic retinal degenerative disease and a leading cause of global irreversible blindness. This disease is characterized by optic nerve damage and retinal ganglion cell (RGC) death. The current treatments available target the lowering of intraocular pressure (IOP), the main risk factor for disease onset and development. However, in some patients, vision loss progresses despite successful IOP control, indicating that new and effective treatments are needed, such as those targeting the neuroprotection of RGCs. Adenosine A3 receptor (A3R) activation confers protection to RGCs following an excitotoxic stimulus. In this work, we investigated whether the activation of A3R could also afford protection to RGCs in the laser-induced ocular hypertension (OHT) model, a well-characterized animal model of glaucoma. The intravitreal injection of 2-Cl-IB-MECA, a selective A3R agonist, abolished the alterations induced by OHT in the negative and positive components of scotopic threshold response (STR) without changing a- and b-wave amplitudes both in scotopic and photopic conditions. Moreover, the treatment of OHT eyes with the A3R agonist promoted the survival of RGCs, attenuated the impairment in retrograde axonal transport, and improved the structure of the optic nerve. Taking into consideration the beneficial effects afforded by 2-Cl-IB-MECA, we can envisage that A3R activation can be considered a good therapeutic strategy to protect RGCs from glaucomatous damage.


Assuntos
Neuroproteção , Hipertensão Ocular/complicações , Receptor A3 de Adenosina/metabolismo , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/patologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Animais , Transporte Axonal/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Neuroproteção/efeitos dos fármacos , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/ultraestrutura , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa