Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Med Sci ; 32(4): 833-840, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28314941

RESUMO

Inferior alveolar nerve (IAN) injuries may occur during various dental routine procedures, especially in the removal of impacted lower third molars, and nerve recovery in these cases is a great challenge in dentistry. Here, the IAN crush injury model was used to assess the efficacy of photobiomodulation (PBM) in the recovery of the IAN in rats following crushing injury (a partial lesion). Rats were divided into four experimental groups: without any procedure, IAN crush injury, and IAN crush injury with PBM and sham group with PBM. Treatment was started 2 days after surgery, above the site of injury, and was performed every other day, totaling 10 sessions. Rats were irradiated with GaAs Laser (Gallium Arsenide, Laserpulse, Ibramed Brazil) emitting a wavelength of 904 nm, an output power of 70 mWpk, beam spot size at target ∼0.1 cm2, a frequency of 9500 Hz, a pulse time 60 ns, and an energy density of 6 J/cm2. Nerve recovery was investigated by measuring the morphometric data of the IAN using TEM and by the expression of laminin, neurofilaments (NFs), and myelin protein zero (MPZ) using Western blot analysis. We found that IAN-injured rats which received PBM had a significant improvement of IAN morphometry when compared to IAN-injured rats without PBM. In parallel, all MPZ, laminin, and NFs exhibited a decrease after PBM. The results of this study indicate that the correlation between the peripheral nerve ultrastructure and the associated protein expression shows the beneficial effects of PBM.


Assuntos
Terapia com Luz de Baixa Intensidade , Nervo Mandibular/metabolismo , Nervo Mandibular/patologia , Compressão Nervosa , Neuropeptídeos/metabolismo , Animais , Densitometria , Filamentos Intermediários/metabolismo , Laminina/metabolismo , Masculino , Nervo Mandibular/ultraestrutura , Proteína P0 da Mielina/metabolismo , Ratos Wistar
2.
Growth Factors ; 33(1): 8-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25489629

RESUMO

Neurotrophins are crucial in relation to axonal regrowth and remyelination following injury; and neural mobilization (NM) is a noninvasive therapy that clinically is effective in neuropathic pain treatment, but its mechanisms remains unclear. We examined the effects of NM on the regeneration of sciatic nerve after chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted to 10 sessions of NM, starting 14 days after CCI. Then, the nerves were analyzed using transmission electron microscopy and western blot for neural growth factor (NGF) and myelin protein zero (MPZ). We observed an increase of NGF and MPZ after CCI and NM. Electron microscopy revealed that CCI-NM samples had high numbers of axons possessing myelin sheaths of normal thickness and less inter-axonal fibrosis than the CCI. These data suggest that NM is effective in facilitating nerve regeneration and NGF and MPZ are involved in this effect.


Assuntos
Manipulações Musculoesqueléticas , Proteína P0 da Mielina/metabolismo , Fator de Crescimento Neural/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Masculino , Proteína P0 da Mielina/genética , Fator de Crescimento Neural/genética , Traumatismos dos Nervos Periféricos/terapia , Ratos , Ratos Wistar , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiologia
3.
Behav Brain Funct ; 10: 19, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24884961

RESUMO

BACKGROUND: The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. METHODS: The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. RESULTS: An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. CONCLUSION: These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation.


Assuntos
Movimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Neuralgia/terapia , Substância Cinzenta Periaquedutal/metabolismo , Modalidades de Fisioterapia , Receptores Opioides/metabolismo , Animais , Masculino , Músculo Esquelético/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Substância Cinzenta Periaquedutal/fisiopatologia , Ratos , Ratos Wistar
4.
Brain Res ; 1687: 60-65, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29496478

RESUMO

Chronic constriction injury (CCI) of the sciatic nerve elicits changes in neuropeptide expression on the dorsal root ganglia (DRG). The neural mobilization (NM) technique is a noninvasive method that has been proven clinically effective in reducing pain. The aim of this study was to analyze the expression of substance P, transient receptor potential vanilloid 1 (TRPV1) and opioid receptors in the DRG of rats with chronic constriction injury and to compare it to animals that received NM treatment. CCI was performed on adult male rats. Each animal was submitted to 10 sessions of neural mobilization every other day, starting 14 days after the CCI injury. At the end of the sessions, the DRG (L4-L6) were analyzed using Western blot assays for substance P, TRPV1 and opioid receptors (µ-opioid receptor, δ-opioid receptor and κ-opioid receptor). We observed a decreased substance P and TRPV1 expression (48% and 35%, respectively) and an important increase of µ-opioid receptor expression (200%) in the DRG after NM treatment compared to control animals. The data provide evidence that NM promotes substantial changes in neuropeptide expression in the DRG; these results may provide new options for treating neuropathic pain.


Assuntos
Regulação da Expressão Gênica/fisiologia , Manipulações Musculoesqueléticas/métodos , Neuralgia/reabilitação , Neuralgia/terapia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Modelos Animais de Doenças , Gânglios Espinais/patologia , Masculino , Força Muscular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/patologia , Neuropeptídeos/genética , Ratos , Ratos Wistar , Receptores Opioides/metabolismo , Substância P/metabolismo , Canais de Cátion TRPV/metabolismo
5.
Pain Res Manag ; 2017: 7429761, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420943

RESUMO

Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF) released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM) technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI). CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP), microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Terapia por Exercício/métodos , Regulação da Expressão Gênica , Neuralgia/reabilitação , Neuroglia/patologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Contagem de Células , Densitometria , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Neuralgia/patologia , Neuroglia/metabolismo , Ratos , Ratos Wistar , Tetraspanina 25/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa