Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(5): 2578-2602, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38305696

RESUMO

Water is known for dissipating electrostatic charges, but it is also a universal agent of matter electrification, creating charged domains in any material contacting or containing it. This new role of water was discovered during the current century. It is proven in a fast-growing number of publications reporting direct experimental measurements of excess charge and electric potential. It is indirectly verified by its success in explaining surprising phenomena in chemical synthesis, electric power generation, metastability, and phase transition kinetics. Additionally, electrification by water is opening the way for developing green technologies that are fully compatible with the environment and have great potential to contribute to sustainability. Electrification by water shows that polyphasic matter is a charge mosaic, converging with the Maxwell-Wagner-Sillars effect, which was discovered one century ago but is still often ignored. Electrified sites in a real system are niches showing various local electrochemical potentials for the charged species. Thus, the electrified mosaics display variable chemical reactivity and mass transfer patterns. Water contributes to interfacial electrification from its singular structural, electric, mixing, adsorption, and absorption properties. A long list of previously unexpected consequences of interfacial electrification includes: "on-water" reactions of chemicals dispersed in water that defy current chemical wisdom; reactions in electrified water microdroplets that do not occur in bulk water, transforming the droplets in microreactors; and lowered surface tension of water, modifying wetting, spreading, adhesion, cohesion, and other properties of matter. Asymmetric capacitors charged by moisture and water are now promising alternative equipment for simultaneously producing electric power and green hydrogen, requiring only ambient thermal energy. Changing surface tension by interfacial electrification also modifies phase-change kinetics, eliminating metastability that is the root of catastrophic electric discharges and destructive explosions. It also changes crystal habits, producing needles and dendrites that shorten battery life. These recent findings derive from a single factor, water's ability to electrify matter, touching on the most relevant aspects of chemistry. They create tremendous scientific opportunities to understand the matter better, and a new chemistry based on electrified interfaces is now emerging.

2.
Langmuir ; 39(16): 5840-5850, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053576

RESUMO

Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.

3.
Phys Chem Chem Phys ; 23(47): 26653-26660, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34557879

RESUMO

The recent discovery of electromechanical coupling in elastomers showed periodic electrification in phase with rubber stretching but following different electrostatic potential patterns. In this work, a Kelvin electrode monitored silicone and natural rubber electrification for extended periods until the rubber tubing underwent rupture. The electric potential of the rubber follows regular, quasi-sinusoidal patterns at the beginning and during the whole run, except when close to rubber fatigue failure, changing into complex waveforms. The attractors on natural latex and silicone rubber become chaotic at roughly 50 seconds before rubber rupture when the nearby orbits diverge wildly. Thus, mechanical-to-electrical transduction in rubber alerts fatigue failure nearly one minute ahead of the breakdown. Moreover, electrostatic potential maps of stretched rubbers show the electrification of the rupture sites, evidencing the electrostatic contribution to the breakdown. These results show the convenient features of electromechanical coupling in rubbers for the non-contact, real-time prediction of the rubber fatigue failure, adding to the possibility of environmental energy harvesting.

4.
Langmuir ; 35(24): 7703-7712, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31125236

RESUMO

The glass/air interface shows electrical properties that are unexpected for a widely used electrical insulator. The mobility of interfacial charge carriers under 80% relative humidity (RH) is 4.81 × 10-5 m2 s-1 V-1, 3 orders of magnitude higher than the electrophoretic mobility of simple ions in water and less than 2 orders of magnitude lower than the electron mobility in copper metal. This allows the glass/air interface to reach the same potential as a biased contacting metal quickly. The interfacial surface resistance R increases by more than 5 orders of magnitude when the RH decreases from 80 to 2%, following an S-shaped curve with small hysteresis. Moreover, the biased surfaces store charge, as shown by Kelvin potential measurements. Applying an electric field parallel to the surface produces RH-dependent results: under low humidity, the interface behaves as expected for an ideal two-dimensional parallel-plate capacitor, while under high RH, it acquires and maintains excess negative charge, which is lost under low RH. The glass surface morphology and potential distribution change on the glass/air interface under high RH and applied potential, including the extensive elimination of nonglass contaminating particles and potential levelling. All these surprising results are explained by using a protonic-charge-transfer mechanism: mobile protons dissociated from silanol groups migrate rapidly along a field-oriented adsorbed water layer, while the matrix-bound silicate anions remain immobile. Glass may thus be classified as the ionic analogue of a topological insulator but based on structural features and charge-transfer mechanisms different from the chalcogenides that have been receiving great attention in the literature.

5.
An Acad Bras Cienc ; 91(4): e20181160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31644645

RESUMO

Sustainable production requires increasing use of raw materials from renewable sources, processed under mild conditions with minimal effluent production. These requirements are satisfied by using materials derived from biomass, in synergy with food and energy production. The possibilities of biomass are continuously enlarged by new findings, as in the intrinsic nanocomposite properties of natural rubber and the amphiphile behavior of cellulose that translated into new functional materials, including high-performance, flexible and conductive non-metallic materials. Other findings are allowing a better understanding of electrostatic phenomena that play a positive role in electrostatic adhesion and cohesion of nanocomposites made from biomass products. Moreover, this should allow the development of safe electrostatic separation techniques, suitable for the fractionation of crude mixtures of biomass residues. A current study on rubber electrostatics is showing its capabilities as a transducer of mechanical energy while providing clues to understand the performance of the dielectric elastomers used in robotic self-sensing actuators.

6.
Langmuir ; 29(3): 892-901, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23256838

RESUMO

Top and bottom surfaces of polyethylene (PE) films exposed to corona discharge display large and opposite electrostatic potentials, forming an electric bilayer in agreement with recent and unexpected findings from Zhiqiang et al. Water wetting, chemical composition and roughness of the two surfaces are different. Surprisingly, the bottom surface, opposite to the corona electrode is charged but it is not oxidized, neither is it wetted with water. Moreover, its morphology is unaltered by charging, while the hydrophilic top surface is much rougher with protruding islands that are the result of oxidation followed by phase separation and polymer-polymer dewetting. Common liquids extract the oxidized, hydrophilic material formed at the upper surface, a result that explains the well-known sensitivity of adhesive joints made using corona-treated thermoplastics to liquids, especially water. These results show that poling the surface closer to the corona electrode triggers another but different charge build-up process at the opposite surface. The outcome is another poled PE surface showing high potential but with unchanged chemical composition, morphology and wetting behavior as the pristine surface, thus opening new possibilities for surface engineering.


Assuntos
Bicamadas Lipídicas/química , Polietileno/química , Proteínas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrofotometria , Eletricidade Estática , Propriedades de Superfície , Raios X
7.
Polymers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34372003

RESUMO

Many materials and additives perform well as fire retardants and suppressants, but there is an ever-growing list of unfulfilled demands requiring new developments. This work explores the outstanding dispersant and adhesive performances of cellulose to create a new effective fire-retardant: exfoliated and reassembled graphite (ERG). This is a new 2D polyfunctional material formed by drying aqueous dispersions of graphite and cellulose on wood, canvas, and other lignocellulosic materials, thus producing adherent layers that reduce the damage caused by a flame to the substrates. Visual observation, thermal images and surface temperature measurements reveal fast heat transfer away from the flamed spots, suppressing flare formation. Pinewood coated with ERG underwent standard flame resistance tests in an accredited laboratory, reaching the highest possible class for combustible substrates. The fire-retardant performance of ERG derives from its thermal stability in air and from its ability to transfer heat to the environment, by conduction and radiation. This new material may thus lead a new class of flame-retardant coatings based on a hitherto unexplored mechanism for fire retardation and showing several technical advantages: the precursor dispersions are water-based, the raw materials used are commodities, and the production process can be performed on commonly used equipment with minimal waste.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa