Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 97(3): 776-784, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535919

RESUMO

Resource partitioning has an essential role in interspecific relations, especially in congener species, which share many morphological traits. In some places, small characids coexist through resource partitioning, which may reduce their interspecific competition. Astyanax species (e.g., Astyanax minor, Astyanax gymnodontus and Astyanax bifasciatus), for example, coexist in different water bodies from the Iguaçu River basin. These species have high phenotypic plasticity and many morphologic specializations that allow them to live in different habitats. Based on evidences that these species modified their feeding habits because of changes in resource availability in Iguaçu River, this study tested two hypotheses: (a) there are differences in head morphology, number of teeth and number of gill rakers among the species of Astyanax; and (b) there are differences in gill arch and gill raker morphology among the species of Astyanax, which may favour their trophic resource partitioning in Iguaçu River. The head morphological traits and quantitative morphological characters were summarized in a principal coordinates analysis (PCoA), and the analysis of similarities (ANOSIM) showed significant differences among species. Gill morphological measurements were analysed through analysis of covariance (ANCOVA), and it also showed significant differences in gill arch and gill raker morphology among species. Therefore, the analysis of ecomorphological traits related to trophic habits revealed some differences that may suggest a tendency of reducing competition for trophic resources in the Iguaçu River basin.


Assuntos
Characidae/anatomia & histologia , Cadeia Alimentar , Rios , Animais , Brasil , Brânquias/anatomia & histologia , Estado Nutricional , Especificidade da Espécie , Clima Tropical
2.
Hydrobiologia ; 850(12-13): 2611-2653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323646

RESUMO

In this review we highlight the relevance of biodiversity that inhabit coastal lagoons, emphasizing how species functions foster processes and services associated with this ecosystem. We identified 26 ecosystem services underpinned by ecological functions performed by bacteria and other microbial organisms, zooplankton, polychaetae worms, mollusks, macro-crustaceans, fishes, birds, and aquatic mammals. These groups present high functional redundancy but perform complementary functions that result in distinct ecosystem processes. Because coastal lagoons are located in the interface between freshwater, marine and terrestrial ecosystems, the ecosystem services provided by the biodiversity surpass the lagoon itself and benefit society in a wider spatial and historical context. The species loss in coastal lagoons due to multiple human-driven impacts affects the ecosystem functioning, influencing negatively the provision of all categories of services (i.e., supporting, regulating, provisioning and cultural). Because animals' assemblages have unequal spatial and temporal distribution in coastal lagoons, it is necessary to adopt ecosystem-level management plans to protect habitat heterogeneity and its biodiversity, ensuring the provision of services for human well-being to multi-actors in the coastal zone.

3.
PLoS One ; 12(6): e0179684, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28654663

RESUMO

Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.


Assuntos
Distribuição Animal/fisiologia , Caraciformes/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Animais , Pesqueiros , Espécies Introduzidas , Modelos Teóricos , Rios , América do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa