Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 619(7969): 311-316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438592

RESUMO

Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.


Assuntos
Recifes de Corais , Plásticos , Plásticos/efeitos adversos , Plásticos/análise , Cadeia Alimentar , Oceano Pacífico , Oceano Atlântico , Oceano Índico , Tamanho da Partícula , Atividades Humanas , Caça
2.
Physiol Rev ; 98(1): 505-553, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351514

RESUMO

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.


Assuntos
Angiotensina I/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Proto-Oncogene Mas , Transdução de Sinais
3.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577921

RESUMO

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Assuntos
Tecido Adiposo , Proto-Oncogene Mas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Animais , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/metabolismo , Obesidade/patologia , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais
4.
Horm Behav ; 163: 105551, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678724

RESUMO

Alamandine is a peptide hormone belonging to the renin-angiotensin system (RAS). It acts through the Mas-related G-protein coupled receptor type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we hypothesize that a lack of alamandine, through MrgD, could cause the anxiety-like behavior in transgenic rats with low brain angiotensinogen [TGR(ASrAOGEN)680]. Adult male transgenic rats exhibited a significant increase in the latency to feeding time in the novelty suppressed feeding test and a decrease in the percentage of time and entries in the open arms in the elevated plus maze. These effects were reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas and MrgD receptor antagonist, prevented the anxiolytic effects induced by this peptide. However, its effects were not altered by the selective Mas receptor antagonist, A779. In conclusion, our data indicates that alamandine, through MrgD, attenuates anxiety-like behavior in male TGR(ASrAOGEN)680, which reinforces the importance of the counter-regulatory RAS axis as promising target for the treatment of neuropsychiatric disorders.


Assuntos
Angiotensinogênio , Ansiolíticos , Ansiedade , Encéfalo , Ratos Transgênicos , Receptores Acoplados a Proteínas G , Animais , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiolíticos/farmacologia , Angiotensinogênio/metabolismo , Angiotensinogênio/genética , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/metabolismo , Oligopeptídeos/farmacologia , Proteínas do Tecido Nervoso
5.
Inflamm Res ; 73(6): 1019-1031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656426

RESUMO

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator. It is not known whether the pro-resolving effects of Ang-(1-7) are sustained and protect the lung from a subsequent inflammatory challenge. This study sought to investigate the impact of treatment in face of a second allergic or lipopolysaccharide (LPS) challenge. METHODS: Mice, sensitized and challenged with ovalbumin (OVA), received a single Ang-(1-7) dose at the peak of eosinophilic inflammation, 24 h after the final OVA challenge. Subsequently, mice were euthanized at 48, 72, 96, and 120 h following the OVA challenge, and cellular infiltrate, inflammatory mediators, lung histopathology, and macrophage-mediated efferocytic activity were evaluated. The secondary inflammatory stimulus (OVA or LPS) was administered 120 h after the last OVA challenge, and subsequent inflammatory analyses were performed. RESULTS: Treatment with Ang-(1-7) resulted in elevated levels of IL-10, CD4+Foxp3+, Mres in the lungs and enhanced macrophage-mediated efferocytic capacity. Moreover, in allergic mice treated with Ang-(1-7) and then subjected to a secondary OVA challenge, inflammation was also reduced. Similarly, in mice exposed to LPS, Ang-(1-7) effectively prevented the lung inflammation. CONCLUSION: A single dose of Ang-(1-7) resolves lung inflammation and protect the lung from a subsequent inflammatory challenge highlighting its potential therapeutic for individuals with asthma.


Assuntos
Angiotensina I , Lipopolissacarídeos , Pulmão , Ovalbumina , Fragmentos de Peptídeos , Animais , Angiotensina I/uso terapêutico , Angiotensina I/farmacologia , Angiotensina I/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Fragmentos de Peptídeos/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/imunologia , Ovalbumina/imunologia , Camundongos , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Camundongos Endogâmicos BALB C , Inflamação/tratamento farmacológico , Eosinofilia/tratamento farmacológico , Eosinofilia/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia
7.
J Environ Manage ; 351: 119815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100861

RESUMO

Although the marine megafauna often strands on beaches around the world, such as sea turtles and whales, stranding data are poorly managed and incorporated into management and conservation strategies. Here we use a knowledge value chain framework to call attention for the urgent need to improve our data architecture and knowledge management on marine megafauna strandings. We use Brazil, a continental megadiverse federative republic, as study model. After describing the main components and identifying the strengths and weaknesses of the current Brazilian data architecture, we propose 10 practical measures for its improvement involving researchers, companies, non-governmental organizations, legislators, policy makers, public agents, citizen scientists, and local communities. Although Brazil has notable strengths such as comprehensive environmental legislation, hundreds of scientists and dozens of prestigious research institutions, stranding data is not translated into technical-scientific knowledge; technical-scientific knowledge is not transformed into effective public regulations; deficient regulations lead to bad decisions and limited actions, which in turn result in ineffective management and conservation strategies. In light of the UN Decade of Ocean Science for Sustainable Development (2021-2030), we propose (1) expanding standardized beach monitoring projects to the entire Brazilian coast; (2) creating a governmental database with FAIR principles; (3) encouraging the development of broad citizen science initiatives; (4) funding scientists and research institutions; (5) boosting outreach activities among researchers to popularize the scientific knowledge; (6) raising awareness among legislators and policy makers on the problem of strandings; (7) updating the existing legal provisions on the environmental licensing of activities developed at sea; (8) hiring new environmental analysts and inspectors and improving the infrastructure of executing environmental agencies; (9) strengthening existing conservation networks with multiple stakeholders; and (10) making the results of the management and conservation strategies broadly accessible to society. These recommendations may also apply to other coastal countries around the world.


Assuntos
Gestão do Conhecimento , Organizações , Desenvolvimento Sustentável , Brasil
8.
Am J Physiol Cell Physiol ; 324(3): C606-C613, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571443

RESUMO

The renin-angiotensin system (RAS) is a classical hormonal system involved in a myriad of cardiovascular functions. This system is composed of many different peptides that act in the heart through different receptors. One of the most important of these peptides is angiotensin II, which in pathological conditions triggers a set of actions that lead to heart failure. On the other hand, another RAS peptide, angiotensin-(1-7) is well known to develop powerful therapeutic effects in many forms of cardiac diseases. In the last decade, two new components of RAS were described, the heptapeptide alamandine and its receptor, the Mas-related G protein-coupled receptor member D (MrgD). Since then, great effort was made to characterize their physiological and pathological function in the heart. In this review, we summarize the latest insights about the actions of alamandine/MrgD axis in the heart, with particular emphasis in the cardiomyocyte. More specifically, we focused on their antihypertrophic and contractility effects, and the related molecular events activated in the cardiomyocyte.


Assuntos
Miócitos Cardíacos , Receptores Acoplados a Proteínas G , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo
9.
Cytokine ; 166: 156192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054665

RESUMO

AIMS: The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS: BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS: HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-ß, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE: Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.


Assuntos
Tecido Adiposo , Citocinas , Animais , Camundongos , Carboidratos da Dieta , Espécies Reativas de Oxigênio , Substâncias Reativas com Ácido Tiobarbitúrico , Dieta , Inflamação
10.
Acta Neuropsychiatr ; 35(1): 27-34, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35979816

RESUMO

OBJECTIVES: To evaluate the impact of genetic deletion of receptors of the counterregulatory arms of the renin-angiotensin system in depressive-like behaviours. METHODS: 8-12 weeks-old male mice wild type (WT, C57BL/6J) and mice with genetic deletion of MrgD (MrgD KO) or Mas receptors (Mas KO) were subjected to the Forced Swim Test (FST) and the Tail Suspension Test (TST). Brain-derived neurotrophic factor (BDNF) levels were measured by enzyme-linked immunosorbent assay (ELISA). Blockade of Mas was performed by acute intracerebroventricular (icv) injection of its selective antagonist, A779. RESULTS: No statistical difference in immobility time was observed between MrgD KO and WT male animals subjected to FST and TST. However, acute icv injection of A779 significantly increased the immobility time of MrgD KO male mice subjected to FST and TST, suggesting the involvement of Mas in preventing depressive-like behaviour. Indeed, Mas KO male animals showed increased immobility time in FST and TST, evidencing a depressive-like behaviour in these animals, in addition to a reduction in BDNF levels in the prefrontal cortex and hippocampus. No changes in BDNF levels were observed in MrgD KO male animals. CONCLUSION: Our data showed that Mas plays an important role in the neurobiology of depression probably by modulating BDNF expression. On the contrary, lack of MrgD did not alter depressive-like behaviour, which was supported by the lack of alterations in BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Masculino , Animais , Depressão/genética , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Elevação dos Membros Posteriores , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo
11.
Bull Environ Contam Toxicol ; 112(1): 12, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093100

RESUMO

This study investigated the genotoxic risk of chronic exposure of hemolymph's cells of Drosophila melanogaster (Insecta, Diptera) to water samples from Boqueirão de Parelhas Dam and from Lucrécia Dam in the semiarid region of Brazil. The dams are located over the Pegmatite Province of Borborema, with rocks rich in uranium and thorium. Water samples hydrated a culture medium composed of mashed potatoes, where larvae of D. melanogaster fed for 24 h, before be underwent to the Comet assay. The same water was evaluated for the presence of dissolved Radon gas (222Rn) and concentrations of 11 toxic metals (Ag, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). The results indicated a genotoxic effect resulting from exposure to the waters of the Parelhas dam, in the samples of August 2018; and in Lucrécia dam, in January 2019. D. melanogaster stood out for its high sensitivity to monitor the genotoxic effects of compounds dissolved in public dams. And unlike to other essentially aquatic sentinel organisms, this species stood out as a model to concomitant studies of air and water possible contaminated, in a scenario of natural environmental radioactivity present in semiarid of Brazil.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Drosophila melanogaster , Monitoramento Ambiental/métodos , Espécies Sentinelas , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Brasil , Ingestão de Alimentos , Metais Pesados/análise
12.
Proteomics ; 22(17): e2100255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35652611

RESUMO

Alamandine is a heptapeptide from the renin-angiotensin system (RAS) with similar structure/function to angiotensin-(1-7) [ang-(1-7)], but they act via different receptors. It remains elusive whether alamandine is an antiproliferative agent like ang-(1-7). The goal of this study was to evaluate the potential antiproliferative activity of alamandine and the underlying cellular signaling. We evaluated alamandine effect in the tumoral cell lines Mia PaCa-2 and A549, and in the nontumoral cell lines HaCaT, CHO and CHO transfected with the alamandine receptor MrgD (CHO-MrgD). Alamandine was able to reduce the proliferation of the tumoral cell lines in a MrgD-dependent fashion. We did not observe any effect in the nontumoral cell lines tested. We also performed proteomics and phosphoproteomics to study the alamandine signaling in Mia PaCa-2 and CHO-MrgD. Data suggest that alamandine induces a shift from anaerobic to aerobic metabolism in the tumoral cells, induces a negative regulation of PI3K/AKT/mTOR pathway and activates the transcriptional factor FoxO1; events that could explain, at least partially, the observed antiproliferative effect of alamandine. This study provides for the first time a comprehensive investigation of the alamandine signaling in tumoral (Mia PaCa-2) and nontumoral (CHO-MrgD) cells, highlighting the antiproliferative activity of alamandine/MrgD and its possible antitumoral effect.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores Acoplados a Proteínas G , Humanos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pancreáticas
13.
Biochem Biophys Res Commun ; 619: 90-96, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35749941

RESUMO

The renin-angiotensin system (RAS) is a key hormonal system. In recent years, the functional analysis of the novel axis of the RAS (ACE2/Ang-(1-7)/Mas receptor) revealed that its activation can become protective against several pathologies, including cardiovascular diseases. Mas knockout mice (Mas-KO) represent an important tool for new investigations. Indeed, extensive biological research has focused on investigating the functional implications of Mas receptor deletion. However, although the Mas receptor was identified in neonatal cardiomyocytes and also in adult ventricular myocytes, only few reports have explored the Ang-(1-7)/Mas signaling directly in cardiomyocytes to date. This study investigated the implication of Mas receptor knockout to the cytokine profile, energy metabolism, and electrical properties of mice-isolated cardiomyocytes. Here, we demonstrated that Mas-KO mice have modulation in some cytokines, such as G-CSF, IL-6, IL-10, and VEGF in the left ventricle. This model also presents increased mitochondrial number in cardiomyocytes and a reduction in the myocyte diameter. Finally, Mas-KO cardiomyocytes have altered action potential modulation after diazoxide challenge. Such electrical finding was different from the data showed for the TGR(A1-7)3292 (TGR) model, which overexpresses Ang-(1-7) in the plasma by 4.5, used by us as a control. Collectively, our findings exemplify the importance of understanding the ACE2/Ang-(1-7)/Mas pathway in cardiomyocytes and heart tissue. The Mas-KO mice model can be considered an important tool for new RAS investigations.


Assuntos
Enzima de Conversão de Angiotensina 2 , Miócitos Cardíacos , Potenciais de Ação , Angiotensina I/metabolismo , Animais , Citocinas/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia
14.
J Cell Physiol ; 236(4): 3059-3072, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32964425

RESUMO

Clinical studies have shown a correlation between thyroid disorders and cardiac diseases. High levels of triiodothyronine (T3) induce cardiac hypertrophy, a risk factor for cardiac complications and heart failure. Previous results have demonstrated that angiotensin-(1-7) is able to block T3-induced cardiac hypertrophy; however, the molecular mechanisms involved in this event have not been fully elucidated. Here, we evidenced the contribution of FOXO3 signaling to angiotensin-(1-7) effects. Angiotensin-(1-7) treatment increased nuclear FOXO3 levels and reduced p-FOXO3 levels (inactive form) in isolated cardiomyocytes. Knockdown of FOXO3 by RNA silencing abrogated the antihypertrophic effect of angiotensin-(1-7). Increased expression of antioxidant enzymes superoxide dismutase 1 (SOD1 and catalase) and lower levels of reactive oxygen species and nuclear factor-κB (NF-κB) were observed after angiotensin-(1-7) treatment in vitro. Consistent with these results, transgenic rats overexpressing angiotensin-(1-7) displayed increased nuclear FOXO3 and SOD1 levels and reduced NF-κB levels in the heart. These results provide a new molecular mechanism responsible for the antihypertrophic effect of angiotensin-(1-7), which may contribute to future therapeutic targets.


Assuntos
Angiotensina I/farmacologia , Catalase/metabolismo , Proteína Forkhead Box O3/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Fragmentos de Peptídeos/farmacologia , Superóxido Dismutase-1/metabolismo , Tri-Iodotironina/efeitos adversos , Regulação para Cima , Animais , Antioxidantes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hipertrofia , Masculino , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Am J Physiol Heart Circ Physiol ; 320(1): H352-H363, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124885

RESUMO

Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 µg/kg/day alamandine for 14 days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-ß in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions.NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.


Assuntos
Fármacos Cardiovasculares/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/prevenção & controle , Oligopeptídeos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R513-R521, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346721

RESUMO

Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Assuntos
Angiotensina I/farmacologia , Pressão Arterial/efeitos dos fármacos , Sistema Cardiovascular/inervação , Córtex Cerebral/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Rim/inervação , Proteínas do Tecido Nervoso/agonistas , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Córtex Cerebral/fisiologia , Ligantes , Masculino , Microinjeções , Proteínas do Tecido Nervoso/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Sistema Nervoso Simpático/fisiologia
17.
Clin Sci (Lond) ; 135(18): 2197-2216, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34494083

RESUMO

Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.


Assuntos
Angiotensina I/metabolismo , Sistema Cardiovascular/metabolismo , Hemodinâmica , Hipertensão/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Sistema Nervoso Simpático/metabolismo , Angiotensina I/genética , Animais , Arginina Vasopressina/metabolismo , Fator Natriurético Atrial/metabolismo , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Sistema Cardiovascular/fisiopatologia , Modelos Animais de Doenças , Genótipo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hemodinâmica/genética , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Fragmentos de Peptídeos/genética , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Proteínas Recombinantes de Fusão/metabolismo , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Resistência Vascular
18.
Exp Physiol ; 106(8): 1710-1719, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998067

RESUMO

NEW FINDINGS: What is the central question of this study? Eccentric contraction exercises cause damage to muscle fibres and induce inflammatory responses. The exacerbation of this process can induce deposition of fibrous connective tissue, leading to decreased muscle function. The aim of this study was to examine the role of angiotensin-(1-7) in this context. What is the main finding and its importance? Our results show that oral treatment with angiotensin-(1-7) decreases muscle damage induced by eccentric exercise, reducing inflammation and fibrosis in the gastrocnemius and soleus muscles. This study shows a potential effect of angiotensin-(1-7) for the prevention of muscle injuries induced by physical exercise. ABSTRACT: Eccentric contraction exercises cause damage to the muscle fibres and induce an inflammatory reaction. The protective effect of angiotensin-(1-7) [Ang-(1-7)] in skeletal muscle has led us to examine the role of this peptide in modifying processes associated with inflammation and fibrogenesis induced by eccentric exercise. In this study, we sought to investigate the effects of oral administration of Ang-(1-7) formulated in hydroxypropyl ß-cyclodextrin (HPß-CD) in prevention and treatment of muscle damage after downhill running. Male Wistar rats were divided into three groups: control (untreated and not exercised; n = 10); treated/exercised HPß-CD Ang-(1-7) (n = 40); and treated/exercised HPß-CD (n = 40). Exercised groups were subjected to a single eccentric contraction exercise session on a treadmill inclined to -13° at a constant speed of 20 m/min, for 60 min. Oral administration of HPß-CD Ang-(1-7) and HPß-CD was performed 3 h before the exercise protocol and daily as a single dose, until the end of the experiment. Samples were collected 4, 12, 24, 48 and 72 h after the exercise session. The animals treated with the Ang-(1-7) showed lower levels of creatine kinase, lower levels of tumor necrosis factor-α in soleus muscle and increased levels of interleukin-10 cytokines. The inflammatory cells and deposition of fibrous connective tissue in soleus and gastrocnemius muscles were lower in the group treated with Ang-(1-7). The results of this study show that treatment with an oral formulation of Ang-(1-7) enhances the process of repair of muscle injury induced by eccentric exercise.


Assuntos
Condicionamento Físico Animal , Administração Oral , Angiotensina I , Animais , Fibrose , Masculino , Músculo Esquelético/fisiologia , Fragmentos de Peptídeos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
19.
Horm Behav ; 127: 104880, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129833

RESUMO

Alamandine (Ala1-Arg2-Val3-Tyr4-Ile5-His6-Pro7), a heptapeptide hormone of the renin-angiotensin system (RAS), exerts its effects through the Mas-related G-protein coupled receptor of the type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we tested the hypothesis that alamandine could attenuate the depression-like behavior observed in transgenic rats with low brain angiotensinogen, TGR (ASrAOGEN)680. Transgenic rats exhibited a significant increase in the immobility time in forced swim test, a phenotype reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas/MrgD receptor antagonist, prevented the antidepressant-like effect induced by this peptide demonstrating, for the first time, that alamandine through MrgD receptor, can modulate depression-like behavior in TGR (ASrAOGEN)680. This result shows an action of alamandine which strengthens the importance of the counter-regulatory arms of the RAS in fight and treatment of neuropsychiatric diseases.


Assuntos
Angiotensinogênio/genética , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Oligopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Angiotensina I/farmacologia , Angiotensinogênio/metabolismo , Animais , Encéfalo/metabolismo , Injeções Intraventriculares , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oligopeptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo
20.
Pharmacol Res ; 163: 105292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171305

RESUMO

Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.


Assuntos
Angiotensina I/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Células A549 , Angiotensina I/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Cães , Humanos , Vírus da Influenza A , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fragmentos de Peptídeos/farmacologia , Peroxidase/imunologia , Fagocitose/efeitos dos fármacos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Streptococcus pneumoniae
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa