RESUMO
ABSTRACT: Cristina-Souza, G, Santos-Mariano, AC, Lima-Silva, AE, Costa, PL, Domingos, PR, Silva, SF, Abreu, WC, De-Oliveira, FR, and Osiecki, R. Panax Ginseng supplementation increases muscle recruitment, attenuates perceived effort, and accelerates muscle force recovery after an eccentric-based exercise in athletes. J Strength Cond Res 36(4): 991-997, 2022-The effect of Panax ginseng during and after an eccentric-based exercise is underexplored. In this study, we investigated the effect of Panax ginseng on muscle force and muscle excitation during an eccentric-based exercise and on subsequent muscle damage and delayed-onset muscle soreness (DOMS). Using a randomized, double-blind, crossover design, 10 male track and field athletes consumed Panax ginseng or placebo for 8 days. At the fifth day, they performed 4 sets until concentric failure of a half-squat exercise, with eccentric action increased by using an eccentric-inductor device attached to their knees. The rating of perceived exertion (RPE) and vastus lateralis electromyographic (EMG) activity was measured during the half-squat. Plasma lactate dehydrogenase (LDH) and creatine kinase (CK) concentrations, DOMS, and maximal isometric voluntary contractions (MIVCs) with EMG recording were measured at 24, 48, and 72 hours after the half-squat. Panax ginseng attenuated RPE and increased EMG during the sets. The MIVC remained reduced 48 hours after exercise in the placebo but returned to baseline 24 hours after exercise in the Panax ginseng, with values at 24 and 48 hours after exercise significantly higher in the Panax ginseng than in the placebo. The EMG during MIVC was higher in the Panax ginseng than in the placebo over the time points. No significant effect of Panax ginseng on LDH, CK, and DOMS was observed. These findings suggest that Panax ginseng increases muscle excitation and attenuates perceived effort during an eccentric-based exercise as well as accelerates the recovery of muscle force in well-trained athletes.
Assuntos
Panax , Atletas , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético/fisiologia , Mialgia/tratamento farmacológicoRESUMO
The menstrual cycle (MC) phases carry to several psychophysiological alterations; however, no study has investigated the impact of MC phases on training load or technical training. In the present study, we investigated the effect of the follicular phase (FP), ovulatory phase (OP), and luteal phase (LP) on training load and technical training in young athletes. Twelve female athletes performed regular daily training sessions with the rating of perceived exertion (RPE) and duration being registered every session. Training impulse (TRIMP), monotony and strain were calculated. MC symptoms, RPE, and duration were also measured during technical training, which was carried out on a specific day during each phase. The TRIMP was not affected by MC phases during regular training (p > .05), but training monotony and strain were higher in FP compared to OP (p < .05). During the technical training, MC phases did not affect RPE (p > .05), but the session was longer in both FP and LP, compared to OP (p < .05). MC symptoms were exacerbated in FP compared to both OP and LP (p < .05). These findings suggest that MC disorders were elevated during FP, which indicate that monitoring MC phases might provide important feedbacks for programming training and expected results during competitions.
Assuntos
Ciclo Menstrual/fisiologia , Ciclo Menstrual/psicologia , Condicionamento Físico Humano/fisiologia , Condicionamento Físico Humano/psicologia , Atletismo/fisiologia , Atletismo/psicologia , Adolescente , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Frequência Cardíaca/fisiologia , Humanos , Hormônio Luteinizante/sangue , Percepção/fisiologia , Condicionamento Físico Humano/métodos , Esforço Físico/fisiologia , Progesterona/sangue , Estresse Psicológico , Fatores de TempoRESUMO
BACKGROUND: The influence of exhaustive whole-body exercise and caffeine ingestion on electromechanical delay (EMD) has been underexplored. This study investigated the effect of exhaustive cycling exercise on EMD and other parameters of muscle contractile properties and the potential ability of caffeine to attenuate the exercise-induced impairments in EMD and muscle contractile properties. METHODS: Ten healthy men cycled until exhaustion (88±2% of VÌO
Assuntos
Cafeína , Contração Muscular , Masculino , Humanos , Cafeína/farmacologia , Contração Muscular/fisiologia , Contração Isométrica , Eletromiografia , Músculo Quadríceps/fisiologia , Ingestão de Alimentos , Músculo Esquelético/fisiologiaRESUMO
PURPOSE: To investigate the effects of caffeine (CAF) on performance during high- and long-jump competitions. METHODS: Using a crossover and double-blind design, 6 well-trained high jumpers and 6 well-trained long jumpers performed a simulation of a high- and long-jump competition 60 minutes after ingesting a capsule containing either 5 mg·kg-1 body mass of anhydrous CAF or a placebo. The high jumps were video recorded for kinematic analysis. The velocity during the approach run of the long jump was also monitored using photocells. RESULTS: CAF improved jump performance (ie, the highest bar height overlap increased by 5.1% [2.3%], P = .008), as well as enhancing the height displacement of the central body mass (+1.3% [1.7%], P = .004) compared with the placebo. CAF had no ergogenic effect on jump distance (P = .722); however, CAF increased the velocity during the last 10 m of the long jump (P = .019), and the percentage of "foul jumps" was higher than that expected by chance in the CAF group (80.5% [12.5%], χ2 = 13.44, P < .001) but not in the cellulose condition (58.3% [22.9%], χ2 = 1.48, P = .224). CONCLUSION: CAF ingestion (5 mg·kg-1 body mass) improves high-jump performance but seems to negatively influence technical aspects during the approach run of the long jump, resulting in no improvement in long-jump performance. Thus, CAF can be useful for jumpers, but the specificity of the jump competition must be taken into account.
Assuntos
Desempenho Atlético , Substâncias para Melhoria do Desempenho , Cafeína/farmacologia , Estudos Cross-Over , Método Duplo-Cego , HumanosRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0224794.].
RESUMO
This study investigated the effect of caffeine on neuromuscular function, power and sprint performance during the days following an eccentric-based exercise. Using a randomly counterbalanced, crossover and double-blinded design, eleven male jumpers and sprinters (age: 18.7 ± 2.7 years) performed a half-squat exercise (4 x 12 repetitions at 70% of 1 RM), with eccentric action emphasized by using a flexible strip attached to their knees (Tirante Musculador®). They ingested either a capsule of placebo or caffeine (5 mg.kg-1 body mass) 24, 48 and 72 h after. Neuromuscular function and muscle power (vertical countermovement-jump test) were assessed before and after the half-squat exercise and 50 min after the placebo or caffeine ingestion at each time-point post-exercise. Sprint performance was measured at pre-test and 75 min after the placebo or caffeine ingestion at each time-point post-exercise. Maximal voluntary contraction (overall fatigue) and twitch torque (peripheral fatigue) reduced after the half-squat exercise (-11 and -28%, respectively, P < 0.05) but returned to baseline 24 h post-exercise (P > 0.05) and were not affected by caffeine ingestion (P > 0.05). The voluntary activation (central fatigue) and sprint performance were not altered throughout the experiment and were not different between caffeine and placebo. However, caffeine increased height and power during the vertical countermovement-jump test at 48 and 72 h post half-squat exercise, when compared to the placebo (P < 0.05). In conclusion, caffeine improves muscle power 48 and 72 h after an eccentric-based exercise, but it has no effect on neuromuscular function and sprint performance.