RESUMO
Biopharmaceuticals are innovative solutions that have revolutionized the treatment of important chronic diseases and malignancies. The approval of biosimilar products has become a complex and balanced process, and there are versions of drugs with established biosimilarity that can offer a more accessible treatment option to patients. The objective of this work was to identify the advancement of these technologies by means of patent and article analysis based on technological and scientific prospection. In patent document recovery, Derwent Innovation Index (DWPI) and PatentInspiration databases were used. The research was based on the search of the selected terms in the title, summary, and claims of the documents through a search strategy containing IPC code and keywords. In articles recovery, the Web of Science tool was used in the search of scientific publications dated from the last 5 years. The search resulted in a total of 2295 individual patent documents and 467 families using DWPI database, 769 individual patents and 205 families using PatentInspiration, and 2602 articles using Web of Science database. Additionally, this work describes the number of organizations that contribute to this area, where they are, how much development they have undergone, and the inventors/authors involved. Based on the number of publications registered, there is an important prominence for scientific research in mAbs. In terms of innovation, it is expected that several therapeutic drugs are already under regulatory review, which will allow drugs to be approved over the next few years and will thus generate a continuous flow of new products based on immunotherapies, mAbs, and biosimilar drugs. These drugs have become essential weapons for the treatment of significant diseases, and the increasing trend in the number of related scientific and technological publications contributes to making these therapies available to the greatest number of people.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Medicamentos Biossimilares/uso terapêutico , Invenções/tendências , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Humanos , Imunoterapia/tendências , Neoplasias/imunologiaRESUMO
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of urinary tract infection worldwide and a critical bloodstream infection agent. There are more than 50 virulence factors (VFs) related to ExPEC pathogenesis; however, many strains isolated from extraintestinal infections are devoid of these factors. Since opportunistic infections may occur in immunocompromised patients, E. coli strains that lack recognized VFs are considered opportunist, and their virulence potential is neglected. We assessed eleven E. coli strains isolated from bloodstream infections and devoid of the most common ExPEC VFs to understand their pathogenic potential. The strains were evaluated according to their capacity to interact in vitro with human eukaryotic cell lineages (Caco-2, T24, HEK293T, and A549 cells), produce type 1 fimbriae and biofilm in diverse media, resist to human sera, and be lethal to Galleria mellonella. One strain displaying all phenotypic traits was sequenced and evaluated. Ten strains adhered to Caco-2 (colon), eight to T24 (bladder), five to HEK-293 T (kidney), and four to A549 (lung) cells. Eight strains produced type 1 fimbriae, ten adhered to abiotic surfaces, nine were serum resistant, and seven were virulent in the G. mellonella model. Six of the eleven E. coli strains displayed traits compatible with pathogens, five of which were isolated from an immune-competent host. The genome of the EC175 strain, isolated from a patient with urosepsis, reveals that the strain belonged to ST504-A, and serotype O11:H11; harbors thirteen VFs genes, including genes encoding UpaG and yersiniabactin as the only ExPEC VFs identified. Together, our results suggest that the ExPEC pathotype includes pathogens from phylogroups A and B1, which harbor VFs that remain to be uncovered.
Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sepse , Infecções Urinárias , Humanos , Escherichia coli/genética , Virulência/genética , Células HEK293 , Infecções por Escherichia coli/microbiologia , Células CACO-2 , Escherichia coli Extraintestinal Patogênica/genética , Sepse/microbiologia , Fatores de Virulência/genética , Infecções Urinárias/microbiologia , FilogeniaRESUMO
Extra-intestinal pathogenic Escherichia coli (ExPEC) may inhabit the human gut microbiota without causing disease. However, if they reach extra-intestinal sites, common cystitis to bloodstream infections may occur, putting patients at risk. To examine the human gut as a source of endogenous infections, we evaluated the E. coli clonal diversity of 18 inpatients' guts and their relationship with strains isolated from urinary tract infection (UTI) in the same hospital. Random amplified polymorphic DNA evaluated the clonal diversity, and the antimicrobial susceptibility was determined by disk diffusion. One isolate of each clone detected was sequenced, and their virulome and resistome were determined. Overall, 177 isolates were screened, among which 32 clones were identified (mean of two clones per patient), with ExPEC strains found in over 75% of the inpatients' guts. Endogenous infection was confirmed in 75% of the cases. ST10, ST59, ST69, ST131, and ST1193 clones and critical mobile drug-resistance encoding genes (blaCTX-M-15, blaOXA-1, blaDHA-1, aac(6')-lb-cr, mcr-1.26, qnrB4, and qnrB19) were identified in the gut of inpatients. The genomic analysis highlighted the diversity of the fecal strains, colonization by lactose-negative E. coli, the high frequency of ExPEC in the gut of inpatients without infections, and the presence of ß-lactamase producing E. coli in the gut of inpatients regardless of the previous antibiotics' usage. Considering that we found more than one ExPEC clone in the gut of several inpatients, surveillance of inpatients' fecal pathogens may prevent UTI caused by E. coli in the hospital and dissemination of risk clones.
RESUMO
Urinary tract infections (UTI) affect community and healthcare patients worldwide and may have different clinical outcomes. We assessed the phylogenetic origin, the presence of 43 virulence factors (VFs) of diarrheagenic and extraintestinal pathogenic Escherichia coli, and the occurrence of hybrid strains among E. coli isolates from 172 outpatients with different types of UTI. Isolates from phylogroup B2 (46%) prevailed, followed by phylogroups A (15.7%) and B1 (12.2%), with similar phylogenetic distribution in symptomatic and asymptomatic patients. The most frequent VFs according to their functional category were fimA (94.8%), ompA (83.1%), ompT (63.3%), chuA (57.6%), and vat (22%). Using published molecular criteria, 34.3% and 18.0% of the isolates showed intrinsic virulence and uropathogenic potential, respectively. Two strains carried the eae and escV genes and one the aggR gene, which classified them as hybrid strains. These hybrid strains interacted with renal and bladder cells, reinforcing their uropathogenic potential. The frequency of UPEC strains bearing a more pathogenic potential in the outpatients studied was smaller than reported in other regions. Our data contribute to deepening current knowledge about the mechanisms involved in UTI pathogenesis, especially among hybrid UPEC strains, as these could colonize the host's intestine, leading to intestinal infections followed by UTI.
RESUMO
(1) Background: Hybrid uropathogenic Escherichia coli (UPEC) strains carry virulence markers of the diarrheagenic E. coli (DEC) pathotypes, which may increase their virulence potential. This study analyzed the frequency and virulence potential of hybrid strains among 452 UPEC strains. (2) Methods: Strains were tested for the DEC virulence diagnostic genes' presence by polymerase chain reaction (PCR). Those carrying at least one gene were classified as hybrid and further tested for 10 UPEC and extraintestinal pathogenic E. coli (ExPEC) virulence genes and phylogenetic classification. Also, their ability to produce hemolysis, adhere to HeLa and renal HEK 293T cells, form a biofilm, and antimicrobial susceptibility were evaluated. (3) Results: Nine (2%) hybrid strains were detected; seven of them carried aggR and two, eae, and were classified as UPEC/EAEC (enteroaggregative E. coli) and UPEC/aEPEC (atypical enteropathogenic E. coli), respectively. They belonged to phylogroups A (five strains), B1 (three), and D (one), and adhered to both cell lineages tested. Only the UPEC/EAEC strains were hemolytic (five strains) and produced biofilm. One UPEC/aEPEC strain was resistant to third-generation cephalosporins and carried blaCTX-M-15. (4) Conclusions: Our findings contribute to understanding the occurrence and pathogenicity of hybrid UPEC strains, which may cause more severe infections.
RESUMO
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
RESUMO
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
RESUMO
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.