Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7836): E3, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33199920

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 585(7823): 68-73, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879502

RESUMO

El Niño and La Niña, collectively referred to as the El Niño-Southern Oscillation (ENSO), are not only highly consequential1-6 but also strongly nonlinear7-14. For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean7-9. The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña15,16. Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models17, which is partially attributed to internal variability18-23. Here we show that like a butterfly effect24, an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsquent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation24,25; it also operates in a large ensemble generated with another model commencing from different initial conditions25,26 and across climate models participating in the Coupled Model Intercomparison Project27,28. Thus, if the greenhouse-warming-induced increase in ENSO variability29 is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate.

4.
Nature ; 564(7735): 201-206, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542166

RESUMO

The El Niño-Southern Oscillation (ENSO) is the dominant and most consequential climate variation on Earth, and is characterized by warming of equatorial Pacific sea surface temperatures (SSTs) during the El Niño phase and cooling during the La Niña phase. ENSO events tend to have a centre-corresponding to the location of the maximum SST anomaly-in either the central equatorial Pacific (5° S-5° N, 160° E-150° W) or the eastern equatorial Pacific (5° S-5° N, 150°-90° W); these two distinct types of ENSO event are referred to as the CP-ENSO and EP-ENSO regimes, respectively. How the ENSO may change under future greenhouse warming is unknown, owing to a lack of inter-model agreement over the response of SSTs in the eastern equatorial Pacific to such warming. Here we find a robust increase in future EP-ENSO SST variability among CMIP5 climate models that simulate the two distinct ENSO regimes. We show that the EP-ENSO SST anomaly pattern and its centre differ greatly from one model to another, and therefore cannot be well represented by a single SST 'index' at the observed centre. However, although the locations of the anomaly centres differ in each model, we find a robust increase in SST variability at each anomaly centre across the majority of models considered. This increase in variability is largely due to greenhouse-warming-induced intensification of upper-ocean stratification in the equatorial Pacific, which enhances ocean-atmosphere coupling. An increase in SST variance implies an increase in the number of 'strong' EP-El Niño events (corresponding to large SST anomalies) and associated extreme weather events.


Assuntos
El Niño Oscilação Sul , Aquecimento Global , Efeito Estufa , Ecossistema , Modelos Teóricos , Dinâmica não Linear , Oceano Pacífico
5.
Nature ; 559(7715): 535-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046070

RESUMO

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Assuntos
El Niño Oscilação Sul , Mudança Climática , Clima Tropical , Movimentos da Água
7.
Nature ; 510(7504): 254-8, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24919920

RESUMO

The Indian Ocean dipole is a prominent mode of coupled ocean-atmosphere variability, affecting the lives of millions of people in Indian Ocean rim countries. In its positive phase, sea surface temperatures are lower than normal off the Sumatra-Java coast, but higher in the western tropical Indian Ocean. During the extreme positive-IOD (pIOD) events of 1961, 1994 and 1997, the eastern cooling strengthened and extended westward along the equatorial Indian Ocean through strong reversal of both the mean westerly winds and the associated eastward-flowing upper ocean currents. This created anomalously dry conditions from the eastern to the central Indian Ocean along the Equator and atmospheric convergence farther west, leading to catastrophic floods in eastern tropical African countries but devastating droughts in eastern Indian Ocean rim countries. Despite these serious consequences, the response of pIOD events to greenhouse warming is unknown. Here, using an ensemble of climate models forced by a scenario of high greenhouse gas emissions (Representative Concentration Pathway 8.5), we project that the frequency of extreme pIOD events will increase by almost a factor of three, from one event every 17.3 years over the twentieth century to one event every 6.3 years over the twenty-first century. We find that a mean state change--with weakening of both equatorial westerly winds and eastward oceanic currents in association with a faster warming in the western than the eastern equatorial Indian Ocean--facilitates more frequent occurrences of wind and oceanic current reversal. This leads to more frequent extreme pIOD events, suggesting an increasing frequency of extreme climate and weather events in regions affected by the pIOD.


Assuntos
Efeito Estufa , Modelos Teóricos , Oceano Índico , Chuva , Estações do Ano , Água do Mar/análise , Temperatura
8.
Nature ; 504(7478): 126-30, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24240279

RESUMO

The El Niño/Southern Oscillation (ENSO) is the Earth's most prominent source of interannual climate variability, exerting profound worldwide effects. Despite decades of research, its behaviour continues to challenge scientists. In the eastern equatorial Pacific Ocean, the anomalously cool sea surface temperatures (SSTs) found during La Niña events and the warm waters of modest El Niño events both propagate westwards, as in the seasonal cycle. In contrast, SST anomalies propagate eastwards during extreme El Niño events, prominently in the post-1976 period, spurring unusual weather events worldwide with costly consequences. The cause of this propagation asymmetry is currently unknown. Here we trace the cause of the asymmetry to the variations in upper ocean currents in the equatorial Pacific, whereby the westward-flowing currents are enhanced during La Niña events but reversed during extreme El Niño events. Our results highlight that propagation asymmetry is favoured when the westward mean equatorial currents weaken, as is projected to be the case under global warming. By analysing past and future climate simulations of an ensemble of models with more realistic propagation, we find a doubling in the occurrences of El Niño events that feature prominent eastward propagation characteristics in a warmer world. Our analysis thus suggests that more frequent emergence of propagation asymmetry will be an indication of the Earth's warming climate.


Assuntos
Simulação por Computador , El Niño Oscilação Sul/história , Aquecimento Global , História do Século XX , Oceano Pacífico , Estações do Ano , Movimentos da Água , Tempo (Meteorologia)
9.
Nat Commun ; 15(1): 5023, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866736

RESUMO

Previous examination of the Indian Ocean Dipole (IOD) response to greenhouse warming shows increased variability in the eastern pole but decreased variability in the western pole before 2100. The opposing response is due to a shallowing equatorial thermocline promoting sea surface temperature (SST) variability in the east, but a more stable atmosphere decreasing variability in equatorial zonal winds that weakens SST variability in the west. Post-2100, how the IOD may change remains unknown. Here we show that IOD variability weakens post-2100 in majority of models under a long-term high emission scenario to 2300. Post-2100, the atmosphere stability increases further and persistent ocean warming arrests or even reverses the eastern Indian Ocean shallowing thermocline. These changes conspire to drive decreased variability in both poles, reducing amplitude of moderate, strong and early-maturing positive IOD events. Our result highlights a nonlinear response of the IOD to long-term greenhouse warming under the high emission scenario.

10.
Nat Commun ; 15(1): 2811, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561343

RESUMO

The Indian Ocean Dipole (IOD) is a major climate variability mode that substantially influences weather extremes and climate patterns worldwide. However, the response of IOD variability to anthropogenic global warming remains highly uncertain. The latest IPCC Sixth Assessment Report concluded that human influences on IOD variability are not robustly detected in observations and twenty-first century climate-model projections. Here, using millennial-length climate simulations, we disentangle forced response and internal variability in IOD change and show that greenhouse warming robustly suppresses IOD variability. On a century time scale, internal variability overwhelms the forced change in IOD, leading to a widespread response in IOD variability. This masking effect is mainly caused by a remote influence of the El Niño-Southern Oscillation. However, on a millennial time scale, nearly all climate models show a long-term weakening trend in IOD variability by greenhouse warming. Our results provide compelling evidence for a human influence on the IOD.

11.
Sci Bull (Beijing) ; 68(9): 946-960, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085399

RESUMO

The Southern Ocean has warmed substantially, and up to early 21st century, Antarctic stratospheric ozone depletion and increasing atmospheric CO2 have conspired to intensify Southern Ocean warming. Despite a projected ozone recovery, fluxes to the Southern Ocean of radiative heat and freshwater from enhanced precipitation and melting sea ice, ice shelves, and ice sheets are expected to increase, as is a Southern Ocean westerly poleward intensification. The warming has far-reaching climatic implications for melt of Antarctic ice shelf and ice sheet, sea level rise, and remote circulations such as the intertropical convergence zone and tropical ocean-atmosphere circulations, which affect extreme weathers, agriculture, and ecosystems. The surface warm and freshwater anomalies are advected northward by the mean circulation and deposited into the ocean interior with a zonal-mean maximum at ∼45°S. The increased momentum and buoyancy fluxes enhance the Southern Ocean circulation and water mass transformation, further increasing the heat uptake. Complex processes that operate but poorly understood include interactive ice shelves and ice sheets, oceanic eddies, tropical-polar interactions, and impact of the Southern Ocean response on the climate change forcing itself; in particular, limited observations and low resolution of climate models hinder rapid progress. Thus, projection of Southern Ocean warming will likely remain uncertain, but recent community effort has laid a solid foundation for substantial progress.

12.
Nat Commun ; 13(1): 6616, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379936

RESUMO

El Niño-Southern Oscillation (ENSO) features strong warm events in the eastern equatorial Pacific (EP), or mild warm and strong cold events in the central Pacific (CP), with distinct impacts on global climates. Under transient greenhouse warming, models project increased sea surface temperature (SST) variability of both ENSO regimes, but the timing of emergence out of internal variability remains unknown for either regime. Here we find increased EP-ENSO SST variability emerging by around 2030 ± 6, more than a decade earlier than that of CP-ENSO, and approximately four decades earlier than that previously suggested without separating the two regimes. The earlier EP-ENSO emergence results from a stronger increase in EP-ENSO rainfall response, which boosts the signal of increased SST variability, and is enhanced by ENSO non-linear atmospheric feedback. Thus, increased ENSO SST variability under greenhouse warming is likely to emerge first in the eastern than central Pacific, and decades earlier than previously anticipated.


Assuntos
Temperatura Baixa , El Niño Oscilação Sul
13.
Belitung Nurs J ; 7(3): 219-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37469350

RESUMO

Background: The COVID-19 pandemic significantly impacts students' mental health. Most of them may experience depression. Due to restrictions and social distancing during the pandemic, counseling may not be applicable in detecting the problems. Therefore, an Islamic spiritual mindfulness-based application called DAHAGA is created in order to detect and reduce depression. It is believed that this innovative app could reduce mental health problems among students. Objective: This study aimed to determine the effect of DAHAGA on reducing depression among nursing students during the COVID-19 pandemic in Indonesia. Methods: This was a quasi-experimental study with a comparison group pretest/posttest design conducted from May to June 2020. Seventy students were selected using convenience sampling, of which 35 were assigned in an experimental group and a comparison group. The validated Indonesian Version-Beck Depression Inventory-II (BDI-II) was used for data collection. Paired t-test and independent t-test were used for data analysis. Results: There was a significant effect of DAHAGA on depression (p < 0.001). The level of depression after intervention (mean 11.49, SD 4.49) was lower than it before the intervention (mean 17.20, SD 4.94). Additionally, there was a significant difference in depression level between the experimental and comparison groups after the intervention with a p-value of < 0.001. Conclusion: The DAHAGA is proven effective in reducing depression. Therefore, this study offers a new and innovative app that fits with the COVID-19 pandemic to help Muslim students maintain their health status. The findings also support Islamic spiritual mindfulness as a part of nursing interventions among psychiatric nurses to deal with mental health problems, especially depression.

14.
Sci Rep ; 10(1): 11500, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661240

RESUMO

Accurately representing the Indian Ocean Dipole (IOD) is crucial for reliable climate predictions and future projections. However, El Niño-Southern Oscillation (ENSO) and IOD interact, making it necessary to evaluate ENSO and IOD simultaneously. Using the historical simulation from 32 fifth phase of Coupled Model Intercomparison Project (CMIP5) models and 34 CMIP6 models, here we find that there are some modest changes in the basic characteristics of the IOD and ENSO from CMIP5 to CMIP6. Firstly, there is a slight shift in the seasonality of IOD toward an earlier peak in September in CMIP6, from November in CMIP5. Secondly, inter-model spread in the frequency of ENSO and the IOD has reduced in CMIP6 relative to CMIP5. ENSO asymmetry is still underestimated in CMIP6, based on the skewness of the Niño3 index, while the IOD skewness has degraded from CMIP5. Finally, mean state SST biases impact on the strength of the IOD; the Pacific cold tongue mean state is important in CMIP5, but in CMIP6 the Pacific warm pool mean state is more important.

15.
Sci Rep ; 9(1): 7364, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089167

RESUMO

The Earth has experienced a global surface warming slowdown (GSWS) or so-called "global warming hiatus" since the end of the 20th century. The GSWS was marked by a La Niña-like decadal cooling in the Pacific Ocean that subsequently generated an increase in the transfer of Pacific waters into the Indian Ocean via the Indonesian Throughflow (ITF). How the Pacific water spreads through the interior of the Indian Ocean and the impact of these decadal ITF transport changes on the Indian Ocean water mass transformation and circulation remain largely unknown. Here, we analyze the thermohaline structures and current systems at different depths in the Indian Ocean prior to and during the GSWS period. Our study shows that the GSWS involved extensive changes to the Indo-Pacific ocean teleconnection system, characterized by subsurface warming and freshening in the Indian Ocean. A hitherto unknown Indian Ocean pathway of the ITF was discovered off Sumatra associated with prolonged northwestward flow within the South Java Current. Our analysis uncovers a direct linkage of enhanced ITF waters with the Agulhas Current in the Mozambique Channel from thermocline depths down to intermediate depths, that freshened the Indian Ocean. These changes in the Indian Ocean circulation and water mass characteristics impact climate variability through changing the sea surface temperature (SST) and precipitation patterns that can subsequently affect regional economies.

16.
Nat Commun ; 10(1): 1990, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040269

RESUMO

Climate models generally simulate a long-term slowdown of the Pacific Walker Circulation in a warming world. However, despite increasing greenhouse forcing, there was an unprecedented intensification of the Pacific Trade Winds during 1992-2011, that co-occurred with a temporary slowdown in global surface warming. Using ensemble simulations from three different climate models starting from different initial conditions, we find a large spread in projected 20-year globally averaged surface air temperature trends that can be linked to differences in Pacific climate variability. This implies diminished predictive skill for global surface air temperature trends over decadal timescales, to a large extent due to intrinsic Pacific Ocean variability. We show, however, that this uncertainty can be considerably reduced when the initial oceanic state is known and well represented in the model. In this case, the spatial patterns of 20-year surface air temperature trends depend largely on the initial state of the Pacific Ocean.

17.
Science ; 363(6430)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819937

RESUMO

The El Niño-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

18.
Nat Commun ; 9(1): 1419, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650992

RESUMO

Extreme positive Indian Ocean Dipole (pIOD) affects weather, agriculture, ecosystems, and public health worldwide, particularly when exacerbated by an extreme El Niño. The Paris Agreement aims to limit warming below 2 °C and ideally below 1.5 °C in global mean temperature (GMT), but how extreme pIOD will respond to this target is unclear. Here we show that the frequency increases linearly as the warming proceeds, and doubles at 1.5 °C warming from the pre-industrial level (statistically significant above the 90% confidence level), underscored by a strong intermodel agreement with 11 out of 13 models producing an increase. However, in sharp contrast to a continuous increase in extreme El Niño frequency long after GMT stabilisation, the extreme pIOD frequency peaks as the GMT stabilises. The contrasting response corresponds to a 50% reduction in frequency of an extreme El Niño preceded by an extreme pIOD from that projected under a business-as-usual scenario.

19.
Sci Rep ; 5: 11697, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26114441

RESUMO

Under global warming, climate models show an almost three-fold increase in extreme positive Indian Ocean Dipole (pIOD) events by 2100. These extreme pIODs are characterised by a westward extension of cold sea surface temperature anomalies (SSTAs) which push the downstream atmospheric convergence further west. This induces severe drought and flooding in the surrounding countries, but the processes involved in this projected increase have not been fully examined. Here we conduct a detailed heat budget analysis of 19 models from phase 5 of the Coupled Model Intercomparison Project and show that nonlinear zonal and vertical heat advection are important for reinforcing extreme pIODs. Under greenhouse warming, these nonlinear processes do not change significantly in amplitude, but the frequency of occurrences surpassing a threshold increases. This is due to the projected weakening of the Walker circulation, which leads to the western tropical Indian Ocean warming faster than the east. As such, the magnitude of SSTAs required to shift convection westward is relatively smaller, allowing these convection shifts to occur more frequently in the future. The associated changes in wind and ocean current anomalies support the zonal and vertical advection terms in a positive feedback process and consequently, moderate pIODs become more extreme-like.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa