RESUMO
Since gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications. We therefore generated a phosphate prodrug (3, ABBV-167) that confers significantly increased water solubility to venetoclax and, upon oral administration to healthy volunteers either as a solution or high drug-load immediate release tablet, extensively converts to the parent drug. Additionally, ABBV-167 demonstrated a lower food effect with respect to venetoclax tablets. These data indicate that beyond-rule-of-5 molecules can be successfully delivered to humans via a solubility-enhancing prodrug moiety to afford robust exposures of the parent drug following oral dosing.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Pró-Fármacos/uso terapêutico , Sulfonamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Pró-Fármacos/farmacologia , Sulfonamidas/farmacologiaRESUMO
The objectives of this study were to investigate the effects of manufacturing parameters on the moisture sorption isotherms of some tablet formulations and to predict the moisture isotherms of the final formulations using polynomial equations. Three tablet formulations including a placebo and 2 drug products were prepared through wet granulation, drying, compression, and coating processes. Equilibrium moisture content of excipients and granules at 25 degrees C with different relative humidities were determined using a dynamic moisture sorption microbalance, while such data for tablets were determined using desiccators. Moisture sorption isotherms were expressed in polynomial equations. Excipient isotherms were used to predict the moisture sorption isotherms of the 3 tablet products. Results showed that different physical properties of granules and tablets, such as particle size distribution, density, and porosity resulting from different granulation and compression conditions did not have significant effect on the moisture isotherms of the materials. Changing coating materials from a powder mixture to a film also did not change the moisture sorption characteristics significantly. The predicted moisture sorption isotherms of the formulations agreed well with the experimental results. These results show that moisture isotherms of solid pharmaceutical products manufactured with conventional processes may be predicted using the isotherms of excipients, and polynomial equations may be used as a tool for the prediction of moisture isotherms.