Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 58(20): 14145-14150, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31566954

RESUMO

We report a comparative study of the binding of I2 (iodine) in a pair of redox-active metal-organic framework (MOF) materials, MFM-300(VIII) and its oxidized, deprotonated analogue, MFM-300(VIV). Adsorption of I2 in MFM-300(VIII) triggers a host-to-guest charge-transfer, accompanied by a partial (∼30%) oxidation of the VIII centers in the host framework and formation of I3- species residing in the MOF channels. Importantly, this charge-transfer induces a significant enhancement in the electrical conductivity (Δσ = 700000) of I2@MFM-300(VIII/IV) in comparison to MFM-300(VIII). In contrast, no host-guest charge-transfer or apparent change in the conductivity was observed upon adsorption of I2 in MFM-300(VIV). High-resolution synchrotron X-ray diffraction of I2@MFM-300(VIII/IV) confirms the first example of self-aggregation of adsorbed iodine species (I2 and I3-) into infinite helical chains within a MOF.

2.
Inorg Chem ; 58(10): 6811-6820, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31067041

RESUMO

Two new isostructural microporous coordination frameworks [Mn3(Hpdc)2(pdc)2] (1) and [Mg3(Hpdc)2(pdc)2] (2) (pdc2- = pyridine-2,4-dicarboxylate) showing primitive cubic (pcu) topology have been prepared and characterized. The pore aperture of the channels is too narrow for the efficient adsorption of N2; however, both compounds demonstrate substantially higher uptake of CO2 (119.9 mL·g-1 for 1 and 102.5 mL·g-1 for 2 at 195 K, 1 bar). Despite of their structural similarities, 2 shows a typical reversible type I isotherm for adsorption/desorption of CO2, while 1 features a two-step adsorption process with a very broad hysteresis between the adsorption and desorption curves. This behavior can be explained by a combination of density functional theory calculations, sorption, and X-ray diffraction analysis and gives insights into the further development of new sorbents showing adsorption/desorption hysteresis.

3.
J Am Chem Soc ; 140(47): 16006-16009, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30285424

RESUMO

We report the first example of crystallographic observation of acetylene binding to -NO2 groups in a metal-organic framework (MOF). Functionalization of MFM-102 with -NO2 groups on phenyl groups leads to a 15% reduction in BET surface area in MFM-102-NO2. However, this is coupled to a 28% increase in acetylene adsorption to 192 cm3 g-1 at 298 K and 1 bar, comparable to other leading porous materials. Neutron diffraction and inelastic scattering experiments reveal the role of -NO2 groups, in cooperation with open metal sites, in the binding of acetylene in MFM-102-NO2.

4.
J Am Chem Soc ; 139(45): 16289-16296, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29020767

RESUMO

During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I2 adsorption in a series of robust porous metal-organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g-1, and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host-I2 and I2-I2 binding interactions at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H-O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighboring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm-3 in MFM-300(Sc).

5.
Chemistry ; 23(10): 2286-2289, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28105696

RESUMO

The metal-organic framework (MOF) complex (H3 O)2 [Zn4 (ur)(Hfdc)2 (fdc)4 ] (1, ur=urotropine, H2 fdc=furan-2,5-dicarboxylic acid) incorporates cryptand-like cavities, which can be used to separate and detect Rb+ and Cs+ optically. This is the first example of the effective employment of a MOF material for optical detection of these cations.

6.
Inorg Chem ; 52(17): 9702-4, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23945041

RESUMO

A unique step-by-step activation of the biporous material via formation of the intermediate host-guest complex with a labile ligand has been presented on the example of the metal-organic framework [Zn4(ur)2(ndc)4]. The difference in the chemical environment of channels allows highly selective separation of the mixture of S4N4 and benzene.

7.
Dalton Trans ; 40(10): 2196-203, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21103564

RESUMO

Zn(II)-containing metal-organic framework (MOF) [Zn(4)(dmf)(ur)(2)(ndc)(4)] (ndc(2-) = 2,6-naphtalenedicarboxylate, ur = urotropin, dmf = N,N'-dimethylformamide) was synthesized and characterized by X-ray crystallography and gas sorption analysis. Host MOF retains its crystallinity after guest removal and exchange. Single-crystal to single-crystal formation of different host-guest systems with benzene and ferrocene was investigated. Interesting guest-depended luminescence properties of the porous host framework were observed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa