Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
J Physiol ; 592(7): 1601-17, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24344163

RESUMO

Considerable electrophysiological and pharmacological evidence has long suggested an important role for acetylcholine in the regulation of rapid-eye-movement (REM) sleep. For example, injection of the cholinergic agonist carbachol into the dorsomedial pons produces an REM sleep-like state with muscle atonia and cortical activation, both of which are cardinal features of REM sleep. Located within this region of the pons is the sublaterodorsal nucleus (SLD), a structure thought to be both necessary and sufficient for generating REM sleep muscle atonia. Subsets of glutamatergic SLD neurons potently contribute to motor inhibition during REM sleep through descending projections to motor-related glycinergic/GABAergic neurons in the spinal cord and ventromedial medulla. Prior electrophysiological and pharmacological studies examining the effects of acetylcholine on SLD neurons have, however, produced conflicting results. In the present study, we sought to clarify how acetylcholine influences the activity of spinally projecting SLD (SLDsp) neurons. We used retrograde tracing in combination with patch-clamp recordings and recorded pre- and postsynaptic effects of carbachol on SLDsp neurons. Carbachol acted presynaptically by increasing the frequency of glutamatergic miniature excitatory postsynaptic currents. We also found that carbachol directly excited SLDsp neurons by activating an Na(+)-Ca(2+) exchanger. Both pre- and postsynaptic effects were mediated by co-activation of M1 and M3 muscarinic receptors. These observations suggest that acetylcholine produces synergistic, excitatory pre- and postsynaptic responses on SLDsp neurons that, in turn, probably serve to promote muscle atonia during REM sleep.


Assuntos
Carbacol/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Ponte/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Neurônios Motores/metabolismo , Inibição Neural/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Ponte/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sono REM/efeitos dos fármacos , Trocador de Sódio e Cálcio/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Medula Espinal/metabolismo , Fatores de Tempo
2.
Science ; 240(4850): 321-4, 1988 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-3258444

RESUMO

Interleukin-1 (IL-1) is a cytokine that mediates the acute phase reaction. Many of the actions of IL-1 involve direct effects on the central nervous system. However, IL-1 has not previously been identified as an intrinsic component within the brain, except in glial cells. An antiserum directed against human IL-1 beta was used to stain the human brain immunohistochemically for IL-1 beta-like immunoreactive neural elements. IL-1 beta-immunoreactive fibers were found innervating the key endocrine and autonomic cell groups that control the central components of the acute phase reaction. These results indicate that IL-1 may be an intrinsic neuromodulator in central nervous system pathways that mediate various metabolic functions of the acute phase reaction, including the body temperature changes that produce the febrile response.


Assuntos
Hipotálamo/análise , Interleucina-1/análise , Humanos , Hipotálamo/anatomia & histologia , Hipotálamo/fisiologia , Imuno-Histoquímica , Interleucina-1/imunologia , Especificidade de Órgãos
3.
Science ; 271(5246): 216-9, 1996 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-8539624

RESUMO

The rostral hypothalamus and adjacent basal forebrain participate in the generation of sleep, but the neuronal circuitry involved in this process remains poorly characterized. Immunocytochemistry was used to identify the FOS protein, an immediate-early gene product, in a group of ventrolateral preoptic neurons that is specifically activated during sleep. The retrograde tracer cholera toxin B, in combination with FOS immunocytochemistry, was used to show that sleep-activated ventrolateral preoptic neurons innervate the tuberomammillary nucleus, a posterior hypothalamic cell group thought to participate in the modulation of arousal. This monosynaptic pathway in the hypothalamus may play a key role in determining sleep-wake states.


Assuntos
Corpos Mamilares/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Animais , Química Encefálica , Toxina da Cólera , Ritmo Circadiano , Imuno-Histoquímica , Vias Neurais , Neurônios/química , Área Pré-Óptica/citologia , Proteínas Proto-Oncogênicas c-fos/análise , Ratos
4.
Science ; 227(4690): 1047-9, 1985 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-2858127

RESUMO

Antisera to atriopeptin III and to a cyanogen bromide fragment of the precursor molecule atriopeptigen were prepared and used to examine the distribution of atriopeptin-like immunoreactive material in the heart and brain of the rat. Granules of this material were seen in myocytes throughout the right and left atria and were densest in the perinuclear region. The distribution of atriopeptin-like immunoreactive material in the heart is consistent with previous reports of atrial secretory granules. In the brain neurons containing the material were observed in the hypothalamus and the pontine tegmentum. Atriopeptin in the brain may serve as a neurotransmitter in neural systems controlling blood volume and composition, the same physiological functions regulated by blood-borne atriopeptin.


Assuntos
Encéfalo/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Proteínas Musculares/fisiologia , Neurônios/fisiologia , Animais , Função Atrial , Fator Natriurético Atrial , Hipotálamo/citologia , Hipotálamo/fisiologia , Soros Imunes/imunologia , Proteínas Musculares/imunologia , Neurotransmissores/fisiologia , Ratos , Equilíbrio Hidroeletrolítico
5.
Clin Neurophysiol ; 130(6): 925-940, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981899

RESUMO

The pedunculopontine nucleus (PPN) is located in the mesopontine tegmentum and is best delimited by a group of large cholinergic neurons adjacent to the decussation of the superior cerebellar peduncle. This part of the brain, populated by many other neuronal groups, is a crossroads for many important functions. Good evidence relates the PPN to control of reflex reactions, sleep-wake cycles, posture and gait. However, the precise role of the PPN in all these functions has been controversial and there still are uncertainties in the functional anatomy and physiology of the nucleus. It is difficult to grasp the extent of the influence of the PPN, not only because of its varied functions and projections, but also because of the controversies arising from them. One controversy is its relationship to the mesencephalic locomotor region (MLR). In this regard, the PPN has become a new target for deep brain stimulation (DBS) for the treatment of parkinsonian gait disorders, including freezing of gait. This review is intended to indicate what is currently known, shed some light on the controversies that have arisen, and to provide a framework for future research.


Assuntos
Tronco Encefálico/fisiologia , Congressos como Assunto , Consenso , Núcleo Tegmental Pedunculopontino/fisiologia , Sociedades Médicas , Estimulação Encefálica Profunda/métodos , District of Columbia/epidemiologia , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Inibição Pré-Pulso/fisiologia , Fases do Sono/fisiologia
6.
Neuron ; 21(6): 1375-85, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9883730

RESUMO

The adipocyte-derived hormone leptin decreases body weight in part by activating the sympathetic nervous system, resulting in increased thermogenesis and energy expenditure. We investigated hypothalamic pathways underlying leptin's effects on stimulating the sympathetic nervous system. We found that leptin activates neurons in the retrochiasmatic area (RCA) and lateral arcuate nucleus (Arc) that innervate the thoracic spinal cord and also contain cocaine- and amphetamine-regulated transcript (CART). We also found that most CART-containing neurons in the RCA and Arc of the hypothalamus also contain proopiomelanocortin (POMC) mRNA. The finding that leptin activates CART/POMC neurons innervating sympathetic preganglionic neurons in the thoracic spinal cord suggests that this pathway may contribute to the increased thermogenesis and energy expenditure and decreased body weight observed following leptin administration.


Assuntos
Hipotálamo/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Pró-Opiomelanocortina/genética , Proteínas/farmacologia , Medula Espinal/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Leptina , Masculino , Microinjeções , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Proteínas/administração & dosagem , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
7.
Neuron ; 23(4): 775-86, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10482243

RESUMO

Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. We identified leptin-sensitive neurons in the arcuate nucleus of the hypothalamus (Arc) that innervate the LHA using retrograde tracing with leptin administration. We found that retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or proopiomelanocortin (POMC) mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. These findings suggest that leptin directly and differentially engages NPY and POMC neurons that project to the LHA, linking circulating leptin and neurons that regulate feeding behavior and body weight homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia , Pró-Opiomelanocortina/fisiologia , Proteínas/fisiologia , Proteínas Repressoras , Fatores de Transcrição , Animais , Núcleo Arqueado do Hipotálamo/citologia , Peso Corporal/fisiologia , Contagem de Células , Ingestão de Alimentos/fisiologia , Homeostase/fisiologia , Região Hipotalâmica Lateral/citologia , Imuno-Histoquímica , Hibridização In Situ , Leptina , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina
8.
Brain ; 130(Pt 11): 2770-88, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17412731

RESUMO

REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming. The terminology relating to RBD, and mechanisms underlying REM sleep without atonia and RBD based on data in cat and rat are presented. Neuroimaging data from the few published human cases with RBD associated with structural lesions in the brainstem are presented, in which the dorsal midbrain and pons are implicated. Pharmacological manipulations which alter RBD frequency and severity are reviewed, and the data from human neuropathological studies are presented. An anatomic framework and new schema for the pathophysiology of RBD are proposed based on recent data in rat regarding the putative flip-flop switch for REM sleep control. The structure in man analogous to the subcoeruleus region in cat and sublaterodorsal nucleus in rat is proposed as the nucleus (and its associated efferent and afferent pathways) crucial to RBD pathophysiology. The association of RBD with neurological disease ('secondary RBD') is presented, with emphasis on RBD associated with neurodegenerative disease, particularly the synucleinopathies. The hypothesized pathophysiology of RBD is presented in relation to the Braak staging system for Parkinson's disease, in which the topography and temporal sequence of synuclein pathology in the brain could explain the evolution of parkinsonism and/or dementia well after the onset of RBD. These data suggest that many patients with 'idiopathic' RBD are actually exhibiting an early clinical manifestation of an evolving neurodegenerative disorder. Such patients may be appropriate for future drug therapies that affect synuclein pathophysiology, in which the development of parkinsonism and/or dementia could be delayed or prevented. We suggest that additional clinicopathological studies be performed in patients with dementia or parkinsonism, with and without RBD, as well as in patients with idiopathic RBD, to further elucidate the pathophysiology and also characterize the clinical and pathophysiological relevance of RBD in neurodegenerative disease. Furthermore, longitudinal studies in patients with idiopathic RBD are warranted to characterize the natural history of such patients and prepare for future therapeutic trials.


Assuntos
Encéfalo/fisiopatologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Animais , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Modelos Animais , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Transtorno do Comportamento do Sono REM/patologia
9.
Nat Neurosci ; 1(6): 445-50, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10196541

RESUMO

Here we summarize recent progress in the biology of leptin, concentrating on its central nervous system (CNS) actions. The product of the ob gene, leptin is a circulating hormone produced by white adipose tissue that has potent effects on feeding behavior, thermogenesis and neuroendocrine responses. Leptin regulates energy homeostasis, as its absence in rodents and humans causes severe obesity. We consider the physiological mechanisms underlying leptin action, along with several novel hypothalamic neuropeptides that affect food intake and body weight. The molecular causes of several other obesity syndromes are discussed to illuminate how the CNS regulates body weight. We describe neural circuits that are downstream of leptin receptors and propose a model linking populations of leptin-responsive neurons with effector neurons underlying leptin's endocrine, autonomic and behavioral effects.


Assuntos
Encéfalo/fisiologia , Proteínas/fisiologia , Humanos , Região Hipotalâmica Lateral/fisiopatologia , Leptina , Modelos Neurológicos , Obesidade/fisiopatologia , Inanição/fisiopatologia
10.
Nat Neurosci ; 5(10): 979-84, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12195434

RESUMO

We investigated the role of regionally discrete GABA (gamma-aminobutyric acid) receptors in the sedative response to pharmacological agents that act on GABA(A) receptors (muscimol, propofol and pentobarbital; 'GABAergic agents') and to ketamine, a general anesthetic that does not affect GABA(A) receptors. Behavioral studies in rats showed that the sedative response to centrally administered GABAergic agents was attenuated by the GABA(A) receptor antagonist gabazine (systemically administered). The sedative response to ketamine, by contrast, was unaffected by gabazine. Using c-Fos as a marker of neuronal activation, we identified a possible role for the tuberomammillary nucleus (TMN): when gabazine was microinjected directly into the TMN, it attenuated the sedative response to GABAergic agents. Furthermore, the GABA(A) receptor agonist muscimol produced a dose-dependent sedation when it was administered into the TMN. We conclude that the TMN is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.


Assuntos
Anestesia , Hipnóticos e Sedativos/farmacologia , Região Hipotalâmica Lateral/fisiologia , Receptores de GABA-A/fisiologia , Sono/fisiologia , Anestesia/métodos , Anestésicos/farmacologia , Animais , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos , Ratos Endogâmicos F344 , Sono/efeitos dos fármacos
11.
Nat Neurosci ; 4(12): 1165, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11713469

RESUMO

All known eukaryotic organisms exhibit physiological and behavioral rhythms termed circadian rhythms that cycle with a near-24-hour period; in mammals, light is the most potent stimulus for entraining endogenous rhythms to the daily light cycle. Photic information is transmitted via the retinohypothalamic tract (RHT) to the suprachiasmatic nucleus (SCN) in the hypothalamus, where circadian rhythms are generated, but the retinal photopigment that mediates circadian entrainment has remained elusive. Here we show that most retinal ganglion cells (RGCs) that project to the SCN express the photopigment melanopsin.


Assuntos
Ritmo Circadiano/fisiologia , Vias Neurais/metabolismo , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/genética , Estilbamidinas , Núcleo Supraquiasmático/metabolismo , Animais , Corantes Fluorescentes , Lateralidade Funcional/fisiologia , Transdução de Sinal Luminoso/fisiologia , Vias Neurais/citologia , Estimulação Luminosa , RNA Mensageiro/metabolismo , Ratos , Células Ganglionares da Retina/citologia , Núcleo Supraquiasmático/citologia
12.
J Clin Invest ; 92(5): 2230-9, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8227338

RESUMO

Subcutaneous injection of the potent, nonselective opioid antagonist diprenorphine inhibits the vasopressin response to acute hypovolemia. To determine if this inhibition is due to antagonism of opioid receptors in brain pathways that mediate volume control, we determined the vasopressin response to different stimuli when diprenorphine or other opiates were injected into the cerebral ventricles, the nucleus tractus solitarius (NTS), or the lateral parabrachial nucleus (PBN) of rats. We found that the vasopressin response to hypovolemia was inhibited by injection of diprenorphine into the cerebral ventricles at a dose too low to be effective when given subcutaneously. This response also was inhibited when a 20-fold lower dose of diprenorphine was injected into the PBN but not when it was injected into the NTS. The inhibitory effect of diprenorphine in the PBN was not attributable to a decrease in osmotic or hypovolemic stimulation and did not occur with osmotic or hypotensive stimuli. Injecting the PBN with equimolar doses of the mu antagonist naloxone, the delta antagonist ICI-154,129 or the kappa-1 agonist U-50,488H had no effect on basal or volume-stimulated vasopressin. We conclude that the inhibition of vasopressin by diprenorphine is due partially to action at a novel class of opioid receptors that transmit volume stimuli through the PBN.


Assuntos
Encéfalo/efeitos dos fármacos , Diprenorfina/farmacologia , Hemodinâmica/efeitos dos fármacos , Choque/tratamento farmacológico , Vasopressinas/sangue , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida , Doença Aguda , Animais , Anti-Hipertensivos/farmacologia , Ventrículos Cerebrais/efeitos dos fármacos , Encefalina Leucina/análogos & derivados , Encefalina Leucina/farmacologia , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Choque/induzido quimicamente , Núcleo Solitário/efeitos dos fármacos , Estimulação Química
13.
Trends Neurosci ; 24(12): 726-31, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11718878

RESUMO

More than 70 years ago, von Economo predicted a wake-promoting area in the posterior hypothalamus and a sleep-promoting region in the preoptic area. Recent studies have dramatically confirmed these predictions. The ventrolateral preoptic nucleus contains GABAergic and galaninergic neurons that are active during sleep and are necessary for normal sleep. The posterior lateral hypothalamus contains orexin/hypocretin neurons that are crucial for maintaining normal wakefulness. A model is proposed in which wake- and sleep-promoting neurons inhibit each other, which results in stable wakefulness and sleep. Disruption of wake- or sleep-promoting pathways results in behavioral state instability.


Assuntos
Hipotálamo/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Humanos , Hipotálamo/citologia , Vias Neurais
14.
Trends Neurosci ; 20(12): 565-70, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9416669

RESUMO

The acute-phase reaction is the multisystem response to acute inflammation. The central nervous system (CNS) mediates a coordinated set of autonomic, endocrine and behavioral responses that constitute the cerebral component of the acute-phase reaction. However, the mechanisms of immune signaling of the CNS remain controversial. Emerging evidence indicates that different parts of the acute-phase reaction are initiated by distinct mechanisms and in different brain regions. Cytokines produced as a result of local infections (for example, in the abdominal or thoracic cavities) might activate vagal sensory fibers, resulting in sickness behavior and fevers. Additionally, circulating immune stimuli might activate meningeal macrophages and perivascular microglia along the borders of the brain, eliciting the local production of prostaglandins and responses such as fever, anorexia, sleepiness, and activation of the hypothalamo-pituitary-adrenal (HPA) axis. The biological importance of these responses might favor the existence of multiple parallel CNS pathways that are engaged by cytokines.


Assuntos
Sistema Nervoso Central/imunologia , Febre/imunologia , Sistema Imunitário/fisiologia , Animais , Humanos , Sistema Imunitário/imunologia
15.
Neuroscience ; 140(2): 403-13, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16542780

RESUMO

Adenosine has been proposed as a homeostatic "sleep factor" that promotes the transition from waking to sleep by affecting several sleep-wake regulatory systems. In the basal forebrain, adenosine accumulates during wakefulness and, when locally applied, suppresses neuronal activity and promotes sleep. However, the neuronal phenotype mediating these effects is unknown. We used whole-cell patch-clamp recordings in in vitro rat brain slices to investigate the effect of adenosine on identified cholinergic and noncholinergic neurons of the magnocellular preoptic nucleus and substantia innominata. Adenosine (0.5-100 microM) reduced the magnocellular preoptic nucleus and substantia innominata cholinergic neuronal firing rate by activating an inwardly rectifying potassium current that reversed at -82 mV and was blocked by barium (100 microM). Application of the A1 receptor antagonist 8-cyclo-pentyl-theophylline (200 nM) blocked the effects of adenosine. Adenosine was also tested on two groups of electrophysiologically distinct noncholinergic magnocellular preoptic nucleus and substantia innominata neurons. In the first group adenosine, via activation of postsynaptic A1 receptors, reduced spontaneous firing via inhibition of the hyperpolarization-activated cation current. Blocking the H-current with ZD7288 (20 microM) abolished adenosine effects on these neurons. The second group was not affected by adenosine. These results demonstrate that, in the magnocellular preoptic nucleus and substantia innominata region of the basal forebrain, adenosine inhibits both cholinergic neurons and a subset of noncholinergic neurons. Both of these effects occur via postsynaptic A1 receptors, but are mediated downstream by two separate mechanisms.


Assuntos
Acetilcolina/metabolismo , Adenosina/metabolismo , Fibras Colinérgicas/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Substância Inominada/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Animais , Fibras Colinérgicas/efeitos dos fármacos , Feminino , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Sono/efeitos dos fármacos , Sono/fisiologia , Substância Inominada/citologia , Substância Inominada/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/metabolismo
16.
J Chem Neuroanat ; 32(2-4): 159-78, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17049433

RESUMO

Pentobarbital microinjected into a restricted locus in the upper brainstem induces a general anesthesia-like state characterized by atonia, loss of consciousness, and pain suppression as assessed by loss of nocifensive response to noxious stimuli. This locus is the mesopontine tegmental anesthesia area (MPTA). Although anesthetic agents directly influence spinal cord nociceptive processing, antinociception during intracerebral microinjection indicates that they can also act supraspinally. Using neuroanatomical tracing methods we show that the MPTA has multiple descending projections to brainstem and spinal areas associated with pain modulation. Most prominent is a massive projection to the rostromedial medulla, a nodal region for descending pain modulation. Together with the periaqueductal gray (PAG), the MPTA is the major mesopontine input to this region. Less dense projections target the PAG, the locus coeruleus and pericoerulear areas, and dorsal and ventral reticular nuclei of the caudal medulla. The MPTA also has modest direct projections to the trigeminal nuclear complex and to superficial layers of the dorsal horn. Double anterograde and retrograde labeling at the light and electron microscopic levels shows that MPTA neurons with descending projections synapse directly on spinally projecting cells of rostromedial medulla. The prominence of the MPTA's projection to the rostromedial medulla suggests that, like the PAG, it may exert antinociceptive actions via this bulbospinal relay.


Assuntos
Vias Eferentes/citologia , Dor/fisiopatologia , Ponte/citologia , Formação Reticular/citologia , Tegmento Mesencefálico/citologia , Anestésicos/farmacologia , Animais , Biotina/análogos & derivados , Mapeamento Encefálico , Toxina da Cólera , Dextranos , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiologia , Vetores Genéticos , Proteínas de Fluorescência Verde , Masculino , Microscopia Eletrônica de Transmissão , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Ponte/efeitos dos fármacos , Ponte/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Formação Reticular/efeitos dos fármacos , Formação Reticular/fisiologia , Tegmento Mesencefálico/efeitos dos fármacos , Tegmento Mesencefálico/fisiologia
17.
J Neurosci ; 20(10): 3830-42, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10804223

RESUMO

Neurons in the ventrolateral preoptic nucleus (VLPO) in rats show c-fos activation after sleep and provide GABAergic innervation of the major monoamine arousal systems, suggesting that they may be a necessary part of the brain circuitry that produces sleep. We examined the effects on sleep behavior in rats of cell-specific damage to the VLPO by microinjection of ibotenic acid. Severe lesions of the central cell cluster of the VLPO ( approximately 80-90% cell loss bilaterally) caused a 60-70% decrease in delta power and a 50-60% decrease in nonrapid-eye-movement (NREM) sleep time (p < 0.001). The number of remaining Fos-immunoreactive neurons in the VLPO cell cluster was linearly related to NREM sleep time (r = 0.77; p < 0.001) and total electroencephalogram delta power (r = 0. 79; p < 0.001) but not to rapid-eye-movement (REM) sleep (r = 0.35; p > 0.10). Lesions in the region containing scattered VLPO neurons medial or dorsal to the cell cluster caused smaller changes in NREM sleep time (24.5 or 15%, respectively) but were more closely associated with loss of REM sleep (r = 0.74; p < 0.01). The insomnia caused by bilateral VLPO lesions persisted for at least 3 weeks. Lesions of the VLPO caused no change in mean body temperature or its circadian variation; after small lesions of the ventromedial preoptic nucleus, body temperature showed normal circadian variation but a wider temperature range, and sleep behavior was not affected. These experiments delineate distinct preoptic sites with primary effects on the regulation of NREM sleep, REM sleep, and body temperature.


Assuntos
Área Pré-Óptica/fisiopatologia , Sono REM/fisiologia , Animais , Biomarcadores , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Ritmo Delta , Denervação , Agonistas de Aminoácidos Excitatórios , Ácido Ibotênico , Masculino , Neurônios/química , Neurônios/fisiologia , Área Pré-Óptica/citologia , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos
18.
J Neurosci ; 20(22): 8620-8, 2000 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11069971

RESUMO

Modafinil is an increasingly popular wake-promoting drug used for the treatment of narcolepsy, but its precise mechanism of action is unknown. To determine potential pathways via which modafinil acts, we administered a range of doses of modafinil to rats, recorded sleep/wake activity, and studied the pattern of neuronal activation using Fos immunohistochemistry. To contrast modafinil-induced wakefulness with spontaneous wakefulness, we administered modafinil at midnight, during the normal waking period of rats. To determine the influence of circadian phase or ambient light, we also injected modafinil at noon on a normal light/dark cycle or in constant darkness. We found that 75 mg/kg modafinil increased Fos immunoreactivity in the tuberomammillary nucleus (TMN) and in orexin (hypocretin) neurons of the perifornical area, two cell groups implicated in the regulation of wakefulness. This low dose of modafinil also increased the number of Fos-immunoreactive (Fos-IR) neurons in the lateral subdivision of the central nucleus of the amygdala. Higher doses increased the number of Fos-IR neurons in the striatum and cingulate cortex. In contrast to previous studies, modafinil did not produce statistically significant increases in Fos expression in either the suprachiasmatic nucleus or the anterior hypothalamic area. These observations suggest that modafinil may promote waking via activation of TMN and orexin neurons, two regions implicated in the promotion of normal wakefulness. Selective pharmacological activation of these hypothalamic regions may represent a novel approach to inducing wakefulness.


Assuntos
Nível de Alerta/efeitos dos fármacos , Compostos Benzidrílicos/administração & dosagem , Hipotálamo/efeitos dos fármacos , Vigília/efeitos dos fármacos , Animais , Nível de Alerta/fisiologia , Ritmo Circadiano/fisiologia , Escuridão , Relação Dose-Resposta a Droga , Esquema de Medicação , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Luz , Modafinila , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Vigília/fisiologia
19.
J Neurosci ; 21(5): 1656-62, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11222656

RESUMO

The neuropeptide orexin (also known as hypocretin) is hypothesized to play a critical role in the regulation of sleep-wake behavior. Lack of orexin produces narcolepsy, which is characterized by poor maintenance of wakefulness and intrusions of rapid eye movement (REM) sleep or REM sleep-like phenomena into wakefulness. Orexin neurons heavily innervate many aminergic nuclei that promote wakefulness and inhibit REM sleep. We hypothesized that orexin neurons should be relatively active during wakefulness and inactive during sleep. To determine the pattern of activity of orexin neurons, we recorded sleep-wake behavior, body temperature, and locomotor activity under various conditions and used double-label immunohistochemistry to measure the expression of Fos in orexin neurons of the perifornical region. In rats maintained on a 12 hr light/dark cycle, more orexin neurons had Fos immunoreactive nuclei during the night period; in animals housed in constant darkness, this activation still occurred during the subjective night. Sleep deprivation or treatment with methamphetamine also increased Fos expression in orexin neurons. In each of these experiments, Fos expression in orexin neurons correlated positively with the amount of wakefulness and correlated negatively with the amounts of non-REM and REM sleep during the preceding 2 hr. In combination with previous work, these results suggest that activation of orexin neurons may contribute to the promotion or maintenance of wakefulness. Conversely, relative inactivity of orexin neurons may allow the expression of sleep.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Contagem de Células , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Escuridão , Eletroencefalografia , Eletromiografia , Fórnice/citologia , Fórnice/efeitos dos fármacos , Fórnice/fisiologia , Luz , Masculino , Metanfetamina/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Orexinas , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono/fisiologia , Privação do Sono/metabolismo , Vigília/efeitos dos fármacos , Vigília/fisiologia
20.
J Neurosci ; 21(13): 4864-74, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-11425913

RESUMO

The suprachiasmatic nucleus (SCN), the circadian pacemaker for the brain, provides a massive projection to the subparaventricular zone (SPZ), but the role of the SPZ in circadian processes has received little attention. We examined the effects on circadian rhythms of sleep, body temperature, and activity in rats of restricted ibotenic acid lesions of the ventral or dorsal SPZ that spared the immediately adjacent paraventricular hypothalamic nucleus (PVH) and the SCN. Ventral SPZ lesions caused profound reduction of measures of circadian index of sleep (by 90%) and locomotor activity (75% reduction) but had less effect on body temperature (50% reduction); dorsal SPZ lesions caused greater reduction of circadian index of body temperature (by 70%) but had less effect on circadian index of locomotor activity (45% reduction) or sleep (<5% reduction). The loss of circadian regulation of body temperature or sleep was replaced by a strong ultradian rhythm (period approximately 3 hr). Lesions of the PVH, immediately dorsal to the SPZ, had no significant effect on any circadian rhythms that we measured, nor did the lesions affect the baseline body temperature. However, the fever response after intravenous injection of lipopolysaccharide (5 microg/kg) was markedly decreased in the rats with PVH lesions (66.6%) but not dorsal SPZ lesions. These results indicate that circadian rhythms of sleep and body temperatures are regulated by separate neuronal populations in the SPZ, and different aspects of thermoregulation (circadian rhythm and fever response) are controlled by distinct anatomical substrates.


Assuntos
Ciclos de Atividade/fisiologia , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Hipotálamo Anterior/fisiologia , Ácido Ibotênico/administração & dosagem , Ciclos de Atividade/efeitos dos fármacos , Animais , Temperatura Corporal/efeitos dos fármacos , Contagem de Células , Ritmo Circadiano/efeitos dos fármacos , Eletrodos Implantados , Eletroencefalografia , Eletromiografia , Hipotálamo Anterior/citologia , Hipotálamo Anterior/efeitos dos fármacos , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Masculino , Microinjeções , Atividade Motora/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Sono REM/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Núcleo Supraquiasmático/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa