Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(37): E3880-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25187565

RESUMO

Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as cholesterol and ubiquinone, as well as other metabolites. In humans, an age-dependent decrease in ubiquinone levels and changes in cholesterol homeostasis suggest that mevalonate pathway activity changes with age. However, our knowledge of the mechanistic basis of these changes remains rudimentary. We have identified a regulatory circuit controlling the sumoylation state of Caenorhabditis elegans HMG-CoA synthase (HMGS-1). This protein is the ortholog of human HMGCS1 enzyme, which mediates the first committed step of the mevalonate pathway. In vivo, HMGS-1 undergoes an age-dependent sumoylation that is balanced by the activity of ULP-4 small ubiquitin-like modifier protease. ULP-4 exhibits an age-regulated expression pattern and a dynamic cytoplasm-to-mitochondria translocation. Thus, spatiotemporal ULP-4 activity controls the HMGS-1 sumoylation state in a mechanism that orchestrates mevalonate pathway activity with the age of the organism. To expand the HMGS-1 regulatory network, we combined proteomic analyses with knockout studies and found that the HMGS-1 level is also governed by the ubiquitin-proteasome pathway. We propose that these conserved molecular circuits have evolved to govern the level of mevalonate pathway flux during aging, a flux whose dysregulation is associated with numerous age-dependent cardiovascular and cancer pathologies.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Hidroximetilglutaril-CoA Sintase/fisiologia , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Sumoilação , Animais , Citosol/metabolismo , Humanos , Lisina/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Transporte Proteico , Ubiquitina/metabolismo
2.
Astrobiology ; 24(6): 579-589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917419

RESUMO

The 21st century is likely to be the first century in which large-scale short- and long-term space missions become common. Accordingly, an ever-increasing body of research is focusing on understanding the effects of current and future space expeditions on human physiology in health and disease. Yet the complex experimental environment, the small number of participants, and the high cost of space missions are among the primary factors that hinder a better understanding of the impact of space missions on human physiology. The goal of our research was to develop a cost-effective, compact, and easy-to-manipulate system to address questions related to human health and disease in space. This initiative was part of the Ramon SpaceLab program, an annual research-based learning program designed to cultivate high school students' involvement in space exploration by facilitating experiments aboard the International Space Station (ISS). In the present study, we used the nematode Caenorhabditis elegans (C. elegans), a well-suited model organism, to investigate the effect of space missions on neurodegeneration-related processes. Our study specifically focused on the level of aggregation of Huntington's disease-causing polyglutamine stretch-containing (PolyQ) proteins in C. elegans muscles, the canonical system for studying neurodegeneration in this organism. We compared animals expressing PolyQ proteins grown onboard the ISS with their genetically identical siblings grown on Earth and observed a significant difference in the number of aggregates between the two populations. Currently, it is challenging to determine whether this effect stems from developmental or morphological differences between the cultures or is a result of life in space. Nevertheless, our results serve as a proof of concept and open a new avenue for utilizing C. elegans to address various open questions in space studies, including the effects of space conditions on the onset and development of neurodegenerative diseases.


Assuntos
Caenorhabditis elegans , Voo Espacial , Animais , Peptídeos/metabolismo , Doenças Neurodegenerativas/patologia , Humanos
3.
Dev Cell ; 14(1): 11-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18194649

RESUMO

Membrane fusion is a fundamental requirement in numerous developmental, physiological, and pathological processes in eukaryotes. So far, only a limited number of viral and cellular fusogens, proteins that fuse membranes, have been isolated and characterized. Despite the diversity in structures and functions of known fusogens, some common principles of action apply to all fusion reactions. These can serve as guidelines in the search for new fusogens, and may allow the formulation of a cross-species, unified theory to explain divergent and convergent evolutionary principles of membrane fusion.


Assuntos
Fusão Celular , Membrana Celular/virologia , Fusão de Membrana/fisiologia , Lipídeos de Membrana/fisiologia , Fenômenos Fisiológicos Virais , Envelhecimento , Sequência de Aminoácidos , Animais , Sequência Conservada , Feminino , Humanos , Dados de Sequência Molecular , Placenta/fisiologia , Gravidez
4.
Dev Cell ; 12(5): 683-98, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17488621

RESUMO

Cell fusion is fundamental for reproduction and organ formation. Fusion between most C. elegans epithelial cells is mediated by the EFF-1 fusogen. However, fusion between the anchor cell and the utse syncytium that establishes a continuous uterine-vulval tube proceeds normally in eff-1 mutants. By isolating mutants where the anchor-cell fails to fuse, we identified aff-1. AFF-1 ectopic expression results in fusion of cells that normally do not fuse in C. elegans. The fusogen activity of AFF-1 was further confirmed by its ability to fuse heterologous cells. AFF-1 and EFF-1 differ in their fusogenic activity and expression patterns but share eight conserved predicted disulfide bonds in their ectodomains, including a putative TGF-beta-type-I-Receptor domain. We found that FOS-1, the Fos transcription factor ortholog that controls anchor-cell invasion during nematode development, is a specific activator of aff-1-mediated anchor-cell fusion. Thus, FOS-1 links cell invasion and fusion in a developmental cascade.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Fusão Celular , Citoplasma/metabolismo , Embrião não Mamífero/citologia , Células Epiteliais/citologia , Feminino , Insetos/citologia , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Proteínas Proto-Oncogênicas c-fos/química , Fatores de Transcrição/química , Vulva/citologia , Vulva/crescimento & desenvolvimento
5.
Dev Cell ; 11(4): 471-81, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17011487

RESUMO

During cell-cell fusion, two cells' plasma membranes merge, allowing the cytoplasms to mix and form a syncytium. Little is known about the mechanisms of cell fusion. Here, we asked whether eff-1, shown previously to be essential for fusion in Caenorhabditis elegans, acts directly in the fusion machinery. We show that expression of EFF-1 transmembrane protein drives fusion of heterologous cells into multinucleate syncytia. We obtained evidence that EFF-1-mediated fusion involves a hemifusion intermediate characterized by membrane mixing without cytoplasm mixing. Furthermore, syncytiogenesis requires EFF-1 in both fusing cells. To test whether this mechanism also applies in vivo, we conducted genetic mosaic analysis of C. elegans and found that homotypic epidermal fusion requires EFF-1 in both cells. Thus, although EFF-1-mediated fusion shares characteristics with viral and intracellular fusion, including an apparent hemifusion step, it differs from these reactions in the homotypic organization of the fusion machinery.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Membrana Celular/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fusão Celular , Membrana Celular/metabolismo , Células Cultivadas , Embrião não Mamífero , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Cinética , Glicoproteínas de Membrana/genética , Modelos Biológicos , Mosaicismo , Spodoptera/citologia , Fatores de Tempo , Transfecção , Transgenes
6.
Commun Integr Biol ; 14(1): 24-26, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659036

RESUMO

Extreme environments constitute the largest habitat on earth, but our understanding of life in such environments is rudimentary. The hostility of extreme environments such as the deep sea, earth's crust, and toxic lakes limits the sampling, culturing, and studying of extremophiles, the organisms that live in these habitats. Thus, in terms of ecological research, extreme environments are the earth's final frontier. A growing body of data suggests that nematodes are the most common animal taxon in different types of extreme settings such as the deep-subsurface and sediments in the deep sea. Notably, the reasons for the abundance of nematodes in extreme habitats remain mostly unknown. I propose that a unique combination of several characteristics of nematodes may explain, additively or synergistically, their successful adaptation to extreme habitats. Novel functional genetic and genomic approaches are expected to reveal molecular mechanisms of adaptation of nematodes to the many fascinating extreme environments on earth.

7.
STAR Protoc ; 2(3): 100710, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34409305

RESUMO

This protocol describes the culturing of the nematode Caenorhabditis elegans (C. elegans) in a sterol-defined experimental system and the subsequent quantitative analysis of C. elegans sterols through gas chromatography-mass spectrometry. Although studied primarily in mammals, sterols are essential biomolecules for most eukaryotes. C. elegans cannot synthesize sterols and thus relies on the uptake of dietary sterols. Therefore, C. elegans is a powerful system to study metabolism in sterol-defined conditions that are described in our protocol. For complete details on the use and execution of this protocol, please refer to Shamsuzzama et al. (2020).


Assuntos
Técnicas de Cultura de Células/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Esteróis/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fitosteróis/análise , Fitosteróis/metabolismo , Esteróis/análise
8.
Biomolecules ; 10(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781719

RESUMO

One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.


Assuntos
Transtornos do Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Humanos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
9.
Mol Metab ; 39: 101003, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339771

RESUMO

OBJECTIVE: Statins are a group of medications that reduce cholesterol synthesis by inhibiting the activity of HMG-CoA reductase, a key enzyme in the mevalonate pathway. The clinical use of statins to lower excess cholesterol levels has revolutionized the cardiovascular field and increased the survival of millions, but some patients have adverse side effects. A growing body of data suggests that some of the beneficial and adverse effects of statins, including their anti-inflammatory, anti-tumorigenic, and myopathic activities, are cholesterol-independent. However, the underlying mechanisms for these effects of statins are not well defined. METHODS: Because Caenorhabditis elegans (C. elegans) lacks the cholesterol synthesis branch of the mevalonate pathway, this organism is a powerful system to unveil the cholesterol-independent effects of statins. We used genetic and biochemical approaches in C. elegans and cultured macrophage-derived murine cells to study the cellular response to statins. RESULTS: We found that statins activate a conserved p38-MAPK (p38) cascade and that the protein geranylgeranylation branch of the mevalonate pathway links the effect of statins to the activation of this p38 pathway. We propose that the blockade of geranylgeranylation impairs the function of specific small GTPases we identified as upstream regulators of the p38 pathway. Statin-mediated p38 activation in C. elegans results in the regulation of programs of innate immunity, stress, and metabolism. In agreement with this regulation, knockout of the p38 pathway results in the hypersensitivity of C. elegans to statins. Treating cultured mammalian cells with clinical doses of statins results in the activation of the same p38 pathway, which upregulates the COX-2 protein, a major regulator of innate immunity in mammals. CONCLUSIONS: Statins activate an evolutionarily conserved p38 pathway to regulate metabolism and innate immunity. Our results highlight the cytoprotective role of p38 activation under statin treatment in vivo and propose that this activation underlies many of the critical cholesterol-independent effects of statins.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Biomarcadores , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Estresse Fisiológico , Transcriptoma , Resposta a Proteínas não Dobradas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Curr Biol ; 30(15): 3031-3038.e7, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32559444

RESUMO

Cholesterol is one of the hallmarks of animals. In vertebrates, the cholesterol synthesis pathway (CSP) is the primary source of cholesterol that has numerous structural and regulative roles [1]. Nevertheless, the few invertebrates tested for cholesterol synthesis show complete sterol auxotrophy [2-6], raising questions about how animals thrive without cholesterol synthesis and about the prevalence of sterol auxotrophy in animals. In the nematode Caenorhabditis elegans (C. elegans), sterols are the precursors of the steroid hormone dafachronic acid that coordinates development to adulthood [7, 8]; thus, sterol-deprived C. elegans arrest at the diapause "dauer" larval stage [9]. Using this system, we have identified a pathway that converts plant and fungal sterols into cholesterol through the activity of enzymes with sequence similarity to specific human CSP enzymes. Based on this finding, we propose that two critical steps shaped the evolution of animal sterol auxotrophy: (1) the loss of the orthologs of the first three enzymes of the CSP and (2) the co-opting of other downstream enzymes of the CSP for the utilization of dietary sterols. Using this mechanistic signature, we studied the evolution of cholesterol auxotrophy across the animal kingdom. Complete sets of CSP enzymes in basal animals suggest that the loss of cholesterol synthesis occurred during animal evolution. A sterol auxothropy signature in the genomes of many invertebrates, including nematodes and most arthropods, suggests widespread cholesterol auxotrophy in animals. Thus, we propose that this co-opted pathway supports widespread cholesterol auxotrophy by interkingdom interactions between cholesterol-auxotrophic animals and sterol-producing fungi and plants.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Caenorhabditis elegans/metabolismo , Colesterol/biossíntese , Esteróis/metabolismo , Animais , Colestenos/metabolismo , Larva/metabolismo
11.
Curr Biol ; 29(19): 3339-3344.e4, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31564490

RESUMO

Extremophiles have much to reveal about the biology of resilience, yet their study is limited by sampling and culturing difficulties [1-3]. The broad success and small size of nematodes make them advantageous for tackling these problems [4-6]. We investigated the arsenic-rich, alkaline, and hypersaline Mono Lake (CA, US) [7-9] for extremophile nematodes. Though Mono Lake has previously been described to contain only two animal species (brine shrimp and alkali flies) in its water and sediments [10], we report the discovery of eight nematode species from the lake, including microbe grazers, parasites, and predators. Thus, nematodes are the dominant animals of Mono Lake in species richness. Phylogenetic analysis suggests that the nematodes originated from multiple colonization events, which is striking, given the young history of extreme conditions at Mono Lake [7, 11]. One species, Auanema sp., is new, culturable, and survives 500 times the human lethal dose of arsenic. Comparisons to two non-extremophile sister species [12] reveal that arsenic resistance is a common feature of the genus and a preadaptive trait that likely allowed Auanema to inhabit Mono Lake. This preadaptation may be partly explained by a variant in the gene dbt-1 shared with some Caenorhabditis elegans natural populations and known to confer arsenic resistance [13]. Our findings expand Mono Lake's ecosystem from two known animal species to ten, and they provide a new system for studying arsenic resistance. The dominance of nematodes in Mono Lake and other extreme environments and our findings of preadaptation to arsenic raise the intriguing possibility that nematodes are widely pre-adapted to be extremophiles.


Assuntos
Arsênio/farmacologia , Resistência a Medicamentos , Extremófilos/fisiologia , Nematoides/fisiologia , Adaptação Biológica , Animais , California , Extremófilos/classificação , Características de História de Vida , Nematoides/classificação , Filogenia
12.
Genetics ; 209(2): 457-473, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599115

RESUMO

The mevalonate pathway is the primary target of the cholesterol-lowering drugs statins, some of the most widely prescribed medicines of all time. The pathway's enzymes not only catalyze the synthesis of cholesterol but also of diverse metabolites such as mitochondrial electron carriers and isoprenyls. Recently, it has been shown that one type of mitochondrial stress response, the UPRmt, can protect yeast, Caenorhabditis elegans, and cultured human cells from the deleterious effects of mevalonate pathway inhibition by statins. The mechanistic basis for this protection, however, remains unknown. Using C. elegans, we found that the UPRmt does not directly affect the levels of the statin target HMG-CoA reductase, the rate-controlling enzyme of the mevalonate pathway in mammals. Instead, in C. elegans the UPRmt upregulates the first dedicated enzyme of the pathway, HMG-CoA synthase (HMGS-1). A targeted RNA interference (RNAi) screen identified two UPRmt transcription factors, ATFS-1 and DVE-1, as regulators of HMGS-1 A comprehensive analysis of the pathway's enzymes found that, in addition to HMGS-1, the UPRmt upregulates enzymes involved with the biosynthesis of electron carriers and geranylgeranylation intermediates. Geranylgeranylation, in turn, is requisite for the full execution of the UPRmt 3response. Thus, the UPRmt acts in at least three coordinated, compensatory arms to upregulate specific branches of the mevalonate pathway, thereby alleviating mitochondrial stress. We propose that statin-mediated inhibition of the mevalonate pathway blocks this compensatory system of the UPRmt and consequentially impedes mitochondrial homeostasis. This effect is likely one of the principal bases for the adverse side effects of statins.


Assuntos
Caenorhabditis elegans/genética , Ácido Mevalônico/metabolismo , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
13.
Oncogene ; 21(15): 2413-7, 2002 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-11948425

RESUMO

The Mdm2 proto-oncogene is amplified and over-expressed in a variety of tumors. One of the major functions of Mdm2 described to date is its ability to modulate the levels and activity of the tumor suppressor protein p53. Mdm2 binds to the N-terminus of p53 and, through its action as an E3 ubiquitin ligase, targets p53 for rapid proteasomal degradation. Mdm2 can also bind to other cellular proteins such as hNumb, E2F1, Rb and Akt; however, the biological significance of these interactions is less clear. To gain insight into the function of Mdm2 in vivo, we have generated a transgenic Drosophila strain bearing the mouse Mdm2 gene. Ectopic expression of Mdm2, using the UAS/GAL4 system, causes eye and wing phenotypes in the fly. Analysis of wing imaginal discs from third instar larvae showed that expression of Mdm2 induces apoptosis. Crosses did not reveal genetic interactions between Mdm2 and the Drosophila homolog of E2F, Numb and Akt. These transgenic flies may provide a unique experimental model for exploring the molecular interactions of Mdm2 in a developmental context.


Assuntos
Drosophila/embriologia , Proteínas Nucleares , Proteínas Proto-Oncogênicas/fisiologia , Animais , Animais Geneticamente Modificados , Apoptose , Drosophila/anatomia & histologia , Drosophila/genética , Olho/embriologia , Olho/ultraestrutura , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Asas de Animais/anatomia & histologia , Asas de Animais/citologia , Asas de Animais/embriologia
14.
Front Microbiol ; 5: 43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575084

RESUMO

The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere.

15.
Science ; 332(6029): 589-92, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21436398

RESUMO

Caenorhabditis elegans proteins AFF-1 and EFF-1 [C. elegans fusion family (CeFF) proteins] are essential for developmental cell-to-cell fusion and can merge insect cells. To study the structure and function of AFF-1, we constructed vesicular stomatitis virus (VSV) displaying AFF-1 on the viral envelope, substituting the native fusogen VSV glycoprotein. Electron microscopy and tomography revealed that AFF-1 formed distinct supercomplexes resembling pentameric and hexameric "flowers" on pseudoviruses. Viruses carrying AFF-1 infected mammalian cells only when CeFFs were on the target cell surface. Furthermore, we identified fusion family (FF) proteins within and beyond nematodes, and divergent members from the human parasitic nematode Trichinella spiralis and the chordate Branchiostoma floridae could also fuse mammalian cells. Thus, FF proteins are part of an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Fusão Celular , Membrana Celular/metabolismo , Fusão de Membrana , Glicoproteínas de Membrana/metabolismo , Vírus da Estomatite Vesicular Indiana/fisiologia , Sequência de Aminoácidos , Animais , Artrópodes/química , Evolução Biológica , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/ultraestrutura , Linhagem Celular , Cordados não Vertebrados/química , Ctenóforos/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Naegleria fowleri/química , Nematoides/química , Proteínas Recombinantes/metabolismo , Recombinação Genética , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/ultraestrutura , Proteínas do Envelope Viral/metabolismo
16.
Development ; 132(1): 123-32, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15576412

RESUMO

Unidirectional signaling from cells expressing Delta (Dl) to cells expressing Notch is a key feature of many developmental processes. We demonstrate that the Drosophila ADAM metalloprotease Kuzbanian-like (Kul) plays a key role in promoting this asymmetry. Kul cleaves Dl efficiently both in cell culture and in flies, and has previously been shown not to be necessary for Notch processing during signaling. In the absence of Kul in the developing wing, the level of Dl in cells that normally receive the signal is elevated, and subsequent alterations in the directionality of Notch signaling lead to prominent phenotypic defects. Proteolytic cleavage of Dl by Kul represents a general mechanism for refining and maintaining the asymmetric distribution of Dl, in cases where transcriptional repression of Dl expression does not suffice to eliminate Dl protein.


Assuntos
Desintegrinas/fisiologia , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Metaloendopeptidases/fisiologia , Metaloproteases/fisiologia , Animais , Células Cultivadas , Desintegrinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Metaloendopeptidases/metabolismo , Metaloproteases/química , Metaloproteases/genética , Fenótipo , Filogenia , Ligação Proteica , Receptores Notch , Análise de Sequência de DNA , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo
17.
Genes Dev ; 16(2): 222-34, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11799065

RESUMO

Spitz (Spi) is a TGFalpha homolog that is a cardinal ligand for the Drosophila EGF receptor throughout development. Cleavage of the ubiquitously expressed transmembrane form of Spi (mSpi) precedes EGF receptor activation. We show that the Star and Rhomboid (Rho) proteins are necessary for Spi cleavage in Drosophila cells. Complexes between the Spi and Star proteins, as well as between the Star and Rho proteins were identified, but no Spi-Star-Rho triple complex was detected. This observation suggests a sequential activity of Star and Rho in mSpi processing. The interactions between Spi and Star regulate the intracellular trafficking of Spi. The Spi precursor is retained in the periphery of the nucleus. Coexpression of Star promotes translocation of Spi to a compartment where Rho is present both in cells and in embryos. A Star deletion construct that maintains binding to Spi and Rho, but is unable to facilitate Spi translocation, lost biological activity. These results underscore the importance of regulated intracellular trafficking in processing of a TGFalpha family ligand.


Assuntos
Proteínas de Drosophila , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Hidrólise , Ligantes , Proteínas de Membrana/química , Dados de Sequência Molecular , Transporte Proteico , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa