Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673915

RESUMO

Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Doença de Parkinson/etiologia , Animais , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia
2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047741

RESUMO

We traced the changes in GABAergic parvalbumin (PV)-expressing interneurons of the hippocampus and reticulo-thalamic nucleus (RT) as possible underlying mechanisms of the different local cortical and hippocampal electroencephalographic (EEG) microstructures during the non-rapid-eye movement (NREM) sleep compared with anesthesia-induced unconsciousness by two anesthetics with different main mechanisms of action (ketamine/diazepam versus propofol). After 3 h of recording their sleep, the rats were divided into two experimental groups: one half received ketamine/diazepam anesthesia and the other half received propofol anesthesia. We simultaneously recorded the EEG of the motor cortex and hippocampus during sleep and during 1 h of surgical anesthesia. We performed immunohistochemistry and analyzed the PV and postsynaptic density protein 95 (PSD-95) expression. PV suppression in the hippocampus and at RT underlies the global theta amplitude attenuation and hippocampal gamma augmentation that is a unique feature of ketamine-induced versus propofol-induced unconsciousness and NREM sleep. While PV suppression resulted in an increase in hippocampal PSD-95 expression, there was no imbalance between inhibition and excitation during ketamine/diazepam anesthesia compared with propofol anesthesia in RT. This increased excitation could be a consequence of a lower GABA interneuronal activity and an additional mechanism underlying the unique local EEG microstructure in the hippocampus during ketamine/diazepam anesthesia.


Assuntos
Interneurônios , Ketamina , Propofol , Animais , Ratos , Diazepam/farmacologia , Hipocampo/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Ketamina/farmacologia , Parvalbuminas/metabolismo , Propofol/farmacologia , Inconsciência/induzido quimicamente
3.
J Sleep Res ; 30(2): e13090, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32472657

RESUMO

We investigated the homogeneity/heterogeneity of spontaneous sleep, simultaneously recorded in the motor cortex and the hippocampus of control rats, and particularly analysed simultaneous and non-simultaneous motor cortical and hippocampal non-rapid eye movement (NREM)/rapid eye movement (REM) sleep. We demonstrate that the sleep architectures of the motor cortex and hippocampus are different in control rats. There was an increase of NREM duration and a decrease of REM duration in the hippocampus versus the motor cortex. In terms of duration, NREM state is the most heterogeneous in the hippocampus, whereas the REM state is the most heterogeneous in the motor cortex. Whereas the hippocampal NREM duration was increased due to the prolongation of NREM episodes, the hippocampal REM duration decreased due to the decreased number of REM episodes. The heterogeneity of sleep in the motor cortex and hippocampus in control rats was particularly expressed through the inverse alteration of sigma amplitude during NREM sleep and beta/gamma amplitudes during REM sleep in the hippocampus, along with the delta, sigma, beta and gamma amplitudes only during non-simultaneous NREM/REM sleep in the hippocampus. We demonstrated the brain structure-related and NREM/REM state-related heterogeneity of the motor cortical and hippocampal local sleep in control rats. The distinctly altered local NREM/REM states, alongside their episode dynamics and electroencephalographic (EEG) microstructures, suggest the importance of both the local neuronal network substrate and the NREM/REM neurochemical substrate in the control mechanisms of sleep.


Assuntos
Hipocampo/fisiopatologia , Córtex Motor/fisiopatologia , Sono/fisiologia , Animais , Eletroencefalografia , Masculino , Ratos , Ratos Wistar
4.
Cell Mol Life Sci ; 77(17): 3383-3399, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31720741

RESUMO

We investigated the role of autophagy, a controlled lysosomal degradation of cellular macromolecules and organelles, in glutamate excitotoxicity during nutrient deprivation in vitro. The incubation in low-glucose serum/amino acid-free cell culture medium synergized with glutamate in increasing AMP/ATP ratio and causing excitotoxic necrosis in SH-SY5Y human neuroblastoma cells. Glutamate suppressed starvation-triggered autophagy, as confirmed by diminished intracellular acidification, lower LC3 punctuation and LC3-I conversion to autophagosome-associated LC3-II, reduced expression of proautophagic beclin-1 and ATG5, increase of the selective autophagic target NBR1, and decreased number of autophagic vesicles. Similar results were observed in PC12 rat pheochromocytoma cells. Both glutamate-mediated excitotoxicity and autophagy inhibition in starved SH-SY5Y cells were reverted by NMDA antagonist memantine and mimicked by NMDA agonists D-aspartate and ibotenate. Glutamate reduced starvation-triggered phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) without affecting the activity of mammalian target of rapamycin complex 1, a major negative regulator of autophagy. This was associated with reduced mRNA levels of autophagy transcriptional activators (FOXO3, ATF4) and molecules involved in autophagy initiation (ULK1, ATG13, FIP200), autophagosome nucleation/elongation (ATG14, beclin-1, ATG5), and autophagic cargo delivery to autophagosomes (SQSTM1). Glutamate-mediated transcriptional repression of autophagy was alleviated by overexpression of constitutively active AMPK. Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, as well as genetic or pharmacological autophagy induction by TFEB overexpression or lithium chloride, reduced the sensitivity of nutrient-deprived SH-SY5Y cells to glutamate excitotoxicity. These data indicate that transcriptional inhibition of AMPK-dependent cytoprotective autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Proteínas Quinases Ativadas por AMP/genética , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Humanos , Ácido Ibotênico/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Memantina/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Necrose , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Nutrientes/deficiência , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445628

RESUMO

We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson's disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.


Assuntos
Modelos Animais de Doenças , Hipocampo/patologia , Interneurônios/patologia , Doença de Parkinson/complicações , Parvalbuminas/metabolismo , Transtornos do Sono-Vigília/patologia , Sinapses/patologia , Animais , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropatologia , Ratos , Ratos Wistar , Formação Reticular/metabolismo , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
J Sleep Res ; 28(1): e12758, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30136327

RESUMO

On the basis of our previous studies and the important role of the thalamo-cortical network in states of unconsciousness, such as anaesthesia and sleep, and in sleep spindles generation, we investigated sleep spindles (SS) and high-voltage sleep spindle (HVS) dynamics during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep following different types of general anaesthesia in both physiological controls and in a rat model of Parkinson's disease (PD) cholinopathy, to follow the impact of anaesthesia on post-anaesthesia sleep at the thalamo-cortical level through an altered sleep spindle dynamics. We recorded 6 hr of spontaneous sleep in all rats, both before and 48 hr after ketamine/diazepam or pentobarbital anaesthesia, and we used 1 hr of NREM or REM sleep from each to validate visually the automatically detected SS or HVS for their extraction and analysis. In the controls, SS occurred mainly during NREM, whereas HVS occurred only during REM sleep. Ketamine/diazepam anaesthesia promoted HVS, prolonged SS during NREM, induced HVS of increased frequency during REM, and increased SS/HVS densities during REM versus NREM sleep. Pentobarbital anaesthesia decreased the frequency of SS during NREM and the HVS density during REM sleep. Although the pedunculopontine tegmental nucleus lesion prolonged SS only during NREM sleep, in these rats, ketamine/diazepam anaesthesia suppressed HVS during both sleep states, whereas pentobarbital anaesthesia promoted HVS during REM sleep. The different impacts of two anaesthetic regimens on the thalamo-cortical regulatory network are expressed through their distinct sleep spindle generation and dynamics that are dependent on the NREM and REM state regulatory neuronal substrate.


Assuntos
Anestesia Geral/métodos , Doença de Parkinson/complicações , Fases do Sono/fisiologia , Sono REM/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Doença de Parkinson/patologia , Ratos , Ratos Wistar , Sono/fisiologia
7.
J Neurosci Res ; 93(2): 244-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25250774

RESUMO

Alzheimer's disease (AD) involves selective loss of basal forebrain cholinergic neurons, particularly in the nucleus basalis (NB). Similarly, Parkinson's disease (PD) might involve the selective loss of pedunculopontine tegmental nucleus (PPT) cholinergic neurons. Therefore, lesions of these functionally distinct cholinergic centers in rats might serve as models of AD and PD cholinergic neuropathologies. Our previous articles described dissimilar sleep/wake-state disorders in rat models of AD and PD cholinergic neuropathologies. This study further examines astroglial and microglial responses as underlying pathologies in these distinct sleep disorders. Unilateral lesions of the NB or the PPT were induced with rats under ketamine/diazepam anesthesia (50 mg/kg i.p.) by using stereotaxically guided microinfusion of the excitotoxin ibotenic acid (IBO). Twenty-one days after the lesion, loss of cholinergic neurons was quantified by nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, and the astroglial and microglial responses were quantified by glia fibrillary acidic protein/OX42 immunohistochemistry. This study demonstrates, for the first time, the anatomofunctionally related astroglial response following unilateral excitotoxic PPT cholinergic neuronal lesion. Whereas IBO NB and PPT lesions similarly enhanced local astroglial and microglial responses, astrogliosis in the PPT was followed by a remote astrogliosis within the ipslilateral NB. Conversely, there was no microglial response within the NB after PPT lesions. Our results reveal the rostrorostral PPT-NB astrogliosis after denervation of cholinergic neurons in the PPT. This hierarchically and anatomofunctionally guided PPT-NB astrogliosis emerged following cholinergic neuronal loss greater than 17% throughout the overall rostrocaudal PPT dimension.


Assuntos
Lesões Encefálicas/patologia , Neurônios Colinérgicos/patologia , Neuroglia/metabolismo , Análise de Variância , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/complicações , Antígeno CD11b/metabolismo , Denervação/métodos , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Ibotênico/toxicidade , Masculino , Neuroglia/efeitos dos fármacos , Núcleo Tegmental Pedunculopontino/lesões , Núcleo Tegmental Pedunculopontino/patologia , Ratos , Ratos Wistar
8.
J Theor Biol ; 289: 160-6, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21920374

RESUMO

We used spectral analysis and Higuchi fractal dimension (FD) to correlate the EEG spectral characteristics of the sensorimotor cortex, hippocampus, and pons with their corresponding EEG signal complexities in anesthetized rats. We have explored the quantitative relationship between the mean FDs and EEG wide range high frequency (8-50 Hz) activity during ketamine/xylazine versus nembutal anesthesia at surgical plane. Using FD we detected distinct inter-structure complexity pattern and uncovered for the first time that the polygraphically and behaviorally defined anesthetized state at surgical plane as equal during experiment in two anesthetic regimens, is not the same with respect to the degree of neuronal activity (degree of generalized neuronal inhibition achieved) at different brain levels. Using the correlation of certain brain structure EEG spectral characteristics with their corresponding FDs, and the surrogate data modeling, we determined what particular frequency band contributes to EEG complexities in ketamine/xylazine versus nembutal anesthesia. In this study we have shown that the quantitative relationship between higher frequency EEG amplitude and EEG complexity is the best-modeled by surrogate data as a 3rd order polynomial. On the base of our EEG amplitude/EEG complexity relationship model, and the evidenced spectral differences in ketamine versus nembutal anesthesia we have proved that higher amplitudes of sigma, beta, and gamma frequency in ketamine anesthesia yields to higher FDs.


Assuntos
Anestésicos Gerais/farmacologia , Eletroencefalografia/efeitos dos fármacos , Monitorização Intraoperatória/métodos , Processamento de Sinais Assistido por Computador , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Fractais , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Masculino , Pentobarbital/farmacologia , Ratos , Ratos Sprague-Dawley , Xilazina/farmacologia
9.
Sleep Breath ; 15(1): 35-47, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20135235

RESUMO

PURPOSE: Sigma and theta frequency electroencephalogram (EEG) oscillations exhibit substantial and well-recognized shifts with transitions across sleep and wake states. We aimed in this study to test the changes in coupling between these characteristic oscillations of non-rapid-eye-movement (NREM)/rapid-eye-movement (REM) sleep within and between cortical and pontine EEGs following monoaminergic lesion, by using the Pearson's product-moment correlation coefficients. METHODS: Experiments were performed in 14 adult, male Sprague Dawley rats chronically instrumented for sleep recording. We lesioned the dorsal raphe nucleus axon terminals in four rats using PCA neurotoxin (p-chloroamphetamine; Sigma-Aldrich, MO) administered as two intraperitoneal (IP) injections (6 mg/kg) 24 h apart. Lesioning of locus coeruleus axon terminals was performed in five rats using DSP-4 neurotoxin (N-2-chloroethyl-N-ethyl-2-bromobenzilamine; Sigma-Aldrich, MO) in a single IP dose of 50 mg/kg. RESULTS & CONCLUSIONS: Our previous study [Saponjic et al., Physiol Behav 90:1-10, 2007] demonstrated that these systemically induced monoaminergic lesions failed to produce significant changes in sleep/wake distribution from control conditions. The present study, by using spectral analysis and by examining the Pearson's correlation coefficients and their approximate probability density (APD) distribution profiles in control and lesion condition, demonstrates significant augmentation of the sigma/theta coupling strength, an inversion of cortical sigma/theta coupling direction and emergence of an additional sigma/theta coupling "mode" specific to the post-lesion state only within the cortex. By using the Pearson's correlation coefficients and their APD profiles, instead of classical sleep/wake distribution analysis, as a measure of direction and strength of sigma/theta coupling within and between cortex and pons, we were able to uncover the impact of a tonically decreased level of brain monoamines as altered strength and mode of coupling between sigma and theta oscillations. Specifically, a new mode of sigma/theta coupling emerged following lesion, which was specific to NREM sleep, suggests that loss of monoaminergic signaling interferes with NREM sleep consolidation. Our results also indicate an importance of monoamines in control of the sleep spindle and theta rhythm generators.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Norepinefrina/metabolismo , Ponte/fisiopatologia , Serotonina/metabolismo , Processamento de Sinais Assistido por Computador , Ritmo Teta/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Análise de Fourier , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiopatologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Neurotoxinas/farmacologia , Ponte/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiopatologia , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono/fisiologia , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Ritmo Teta/efeitos dos fármacos , Vigília/efeitos dos fármacos , Vigília/fisiologia
10.
Behav Brain Res ; 397: 112957, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038348

RESUMO

We investigated the prodromal alterations of local sleep, particularly the motor cortical and hippocampal sleep, along with spontaneous locomotor activity in the rat models of Parkinson's disease (PD). We performed our experiments in adult, male Wistar rats, chronically implanted for sleep recording and divided into four experimental groups: the control (implanted controls), the bilateral pedunculopontine tegmental nucleus (PPT) lesions (PD cholinopathy), the unilateral substantia nigra pars compacta (SNpc) lesions (hemiparkinsonism) and the unilateral SNpc/bilateral PPT lesions (hemiparkinsonism with PD cholinopathy). We followed their sleep, basal locomotor activity and spatial habituation for 14 days following the surgical procedures. Severe prodromal local sleep disturbances in the hemiparkinsonian rats were expressed as sleep fragmentation and distinct local NREM/REM EEG microstructure alterations in both the motor cortex and the hippocampus. Alongside the state-unrelated role of the dopaminergic control of theta oscillations and NREM/REM related sigma and beta oscillations, we demonstrated that the REM neurochemical regulatory substrate is particularly important in the dopaminergic control of beta oscillations. In addition, hippocampal prodromal sleep disorders in the hemiparkinsonian rats were expressed as NREM/REM fragmentation and the opposite impact of dopaminergic versus cholinergic control of the NREM delta and beta oscillation amplitudes in the hippocampus, likewise in the motor cortex versus the hippocampus. All these distinct prodromal local sleep disorders and the dopaminergic vs. cholinergic impact on NREM/REM EEG microstructure alterations are of fundamental importance for the further development and follow-up of PD-modifying therapies, and for the identification of patients who are at risk of developing PD.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiopatologia , Locomoção/fisiologia , Córtex Motor/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Sintomas Prodrômicos , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Eletrocorticografia , Eletromiografia , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/complicações , Ratos , Ratos Wistar , Transtornos do Sono-Vigília/etiologia
11.
Comput Biol Med ; 115: 103482, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614228

RESUMO

To reveal the best choice of algorithm for parvalbumin-immunostained images of the hippocampal gyrus dentatus in two distinct rat models of Parkinson's disease (PD), particularly in terms of extracting the crucial information from the image, we tested whether the impact of experimentally induced dopaminergic (hemiparkinsonism) vs. cholinergic (PD cholinopathy) innervation impairment on the parvalbumin stained GABA interneurons could be detected using two separate algorithms, the fractal box-count and the gray-level co-occurrence matrix analysis (GLCM) algorithms. For the texture and fractal analysis of the hippocampal gyrus dentatus images, we used.tif images from three experimental groups of adult male Wistar rats: control rats, rats with Parkinson disease (PD) cholinergic neuropathology (with a PPT lesion), and hemiparkinsonian rats (with a SNpc lesion). For the suprapyramidal layer of the gyrus dentatus ASM and Entropy differentiated the images of the SNpc lesion versus the images of the control and the PPT lesion subjects, with significantly higher ASM and lower Entropy, indicating the homogenization of the images and their lower gray-level complexity. The infrapyramidal images of the SNpc group were differentiated versus the images from the control and PPT groups in terms of all the GLCM parameters: they showed lower mean Entropy and Contrast and higher ASM, Correlation and IDM. These results strongly suggest a rise in the uniformity, homogeneity and orderliness in the gray-levels of images from the SNpc group. Our results indicate that GLCM analysis is a more sensitive tool than fractal analysis for the detection of increased dendritic arborization in histological images.


Assuntos
Giro Denteado , Processamento de Imagem Assistida por Computador , Interneurônios , Doença de Parkinson Secundária , Parvalbuminas/metabolismo , Animais , Giro Denteado/metabolismo , Giro Denteado/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Ratos , Ratos Wistar , Coloração e Rotulagem
12.
Front Neurosci ; 13: 148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30872994

RESUMO

Our previous studies in the rat model of Parkinson's disease (PD) cholinopathy demonstrated the sleep-related alterations in electroencephalographic (EEG) oscillations at the cortical and hippocampal levels, cortical drives, and sleep spindles (SSs) as the earliest functional biomarkers preceding hypokinesia. Our aim in this study was to follow the impact of a unilateral substantia nigra pars compacta (SNpc) lesion in rat on the cortical and hippocampal sleep architectures and their EEG microstructures, as well as the cortico-hippocampal synchronizations of EEG oscillations, and the SS and high voltage sleep spindle (HVS) dynamics during NREM and REM sleep. We performed unilateral SNpc lesions using two different concentrations/volumes of 6-hydroxydopamine (6-OHDA; 12 µg/1 µl or 12 µg/2 µl). Whereas the unilateral dopaminergic neuronal loss >50% throughout the overall SNpc rostro-caudal dimension prolonged the Wake state, with no change in the NREM or REM duration, there was a long-lasting theta amplitude augmentation across all sleep states in the motor cortex (MCx), but also in the CA1 hippocampus (Hipp) during both Wake and REM sleep. We demonstrate that SS are the hallmarks of NREM sleep, but that they also occur during REM sleep in the MCx and Hipp of the control rats. Whereas SS are always longer in REM vs. NREM sleep in both structures, they are consistently slower in the Hipp. The dopaminergic neuronal loss increased the density of SS in both structures and shortened them in the MCx during NREM sleep, without changing the intrinsic frequency. Conversely, HVS are the hallmarks of REM sleep in the control rats, slower in the Hipp vs. MCx, and the dopaminergic neuronal loss increased their density in the MCx, but shortened them more consistently in the Hipp during REM sleep. In addition, there was an altered synchronization of the EEG oscillations between the MCx and Hipp in different sleep states, particularly the theta and sigma coherences during REM sleep. We provide novel evidence for the importance of the SNpc dopaminergic innervation in sleep regulation, theta rhythm generation, and SS/HVS dynamics control. We suggest the importance of the underlying REM sleep regulatory substrate to HVS generation and duration and to the cortico-hippocampal synchronizations of EEG oscillations in hemiparkinsonian rats.

13.
Respir Physiol Neurobiol ; 161(3): 273-80, 2008 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-18420469

RESUMO

We applied a novel approach to respiratory waveform analysis--Monotone Signal Segments Analysis (MSSA) on 6-h recordings of respiratory signals in rats. To validate MSSA as a respiratory signal analysis tool we tested it by detecting: breaths and breath-to-breath intervals; respiratory timing and volume modes; and changes in respiratory pattern caused by lesions of monoaminergic systems in rats. MSSA differentiated three respiratory timing (tachypneic, eupneic, bradypneic-apneic), and three volume (artifacts, normovolemic, hypervolemic-sighs) modes. Lesion-induced respiratory pattern modulation was visible as shifts in the distributions of monotone signal segment amplitudes, and of breath-to-breath intervals. Specifically, noradrenergic lesion induced an increase in mean volume (por=0.06). MSSA of timing modes detected noradrenergic lesion-induced interdependent changes in the balance of eupneic (decrease; p

Assuntos
Testes de Função Respiratória/métodos , Mecânica Respiratória/fisiologia , Adrenérgicos/toxicidade , Animais , Benzilaminas/toxicidade , Masculino , Polissonografia/métodos , Ratos , Ratos Sprague-Dawley , Valores de Referência , Mecânica Respiratória/efeitos dos fármacos , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/fisiologia , Fatores de Tempo
14.
Behav Brain Res ; 339: 79-92, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29170000

RESUMO

In order to find out the possible earliest biomarkers of Parkinson's disease (PD) cholinopathy, we followed the impact of bilateral pedunculopontine tegmental nucleus (PPT) lesion in rat on: the cortical and hippocampal sleep/wake states architectures, all sleep states related EEG microstructures, sleep spindles, the basal and stimulated locomotor activity. Sleep and basal locomotor activity in adult Wistar rats were followed during their inactive circadian phase, and throughout the same aging period. The bilateral PPT lesions were done by 0.1M ibotenic acid (IBO) during the surgical procedure for implantation of the electroencephalographic (EEG) and electromyographic (EMG) electrodes for chronic sleep recording. The cholinergic neuronal loss was identified by NADPH - diaphorase histochemistry. After all sleep and behavioral recording sessions, the locomotor activity was stimulated by d-amphetamine (d-AMPH) and the neuronal activity of striatum was followed by c-Fos immunolabeling. Impaired cholinergic innervation from the PPT was expressed earlier as sleep disorder then as movement disorder, and it was the earliest and long-lasting at hippocampal and thalamo-cortical level, and followed by a delayed "hypokinesia". This severe impact of a tonically impaired PPT cholinergic innervation was evidenced as the cholinergic interneuronal loss of the caudate putamen and as a suppressed c-Fos expression after stimulation by d-AMPH. In order how they occurred, the hippocampal non rapid eye movement (NREM) sleep disorder, altered high voltage sleep spindle (HVS) dynamics during rapid eye movement (REM) sleep in the hippocampus and motor cortex, and "hypokinesia" may serve as the biomarkers of PD cholinopathy onset and progression.


Assuntos
Locomoção/fisiologia , Doença de Parkinson/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Animais , Biomarcadores/análise , Encéfalo/fisiologia , Eletroencefalografia/métodos , Masculino , Doença de Parkinson/patologia , Ratos Wistar , Vigília/fisiologia
15.
Respir Physiol Neurobiol ; 156(1): 40-6, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-16934539

RESUMO

Respiratory disturbance, including apnea, can be induced by microinjection of glutamate into the intertrigeminal region (ITR) of the lateral pons, a region that is anatomically coupled to both the dorsal and ventral respiratory groups of the medulla. We showed that the ITR plays a functional role in regulating both vagal reflex apnea and spontaneous sleep-related apnea in rats, but the mechanisms have not been determined. This study shows that functional NMDA receptors are expressed in the ITR since the blockade of these receptors by AP5, a specific NMDA receptor antagonist, was fully effective in blocking apnea induced by glutamate injection within this region. Selective blockade of ITR NMDA receptors had no effect on the immediate apnea evoked by an intravenous 5-HT bolus, whereas the nonspecific glutamate receptor antagonist kynurenic acid significantly increased the duration of this vagal reflex apnea. These findings are of interest because pontine NMDA receptors participate in inspiratory off-switch mechanisms and have been implicated in various short- and long-term potentiation and depression phenomena. These data support the involvement of ITR non-NMDA receptors in modulation of reflex apnea per se, whereas NMDA receptors play a role in damping respiratory responses to transient disturbances.


Assuntos
Apneia/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Mecânica Respiratória/fisiologia , Núcleos do Trigêmeo/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Análise de Variância , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Ácido Cinurênico/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/classificação , Receptores de Glutamato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Núcleos do Trigêmeo/efeitos dos fármacos
16.
Physiol Behav ; 168: 41-54, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27771371

RESUMO

Postoperative sleep disorders, particularly the REM sleep disorder, may have a significant deleterious impact on postoperative outcomes and may contribute to the genesis of certain delayed postoperative complications. We have followed the effect of distinct anesthesia regimens (ketamine/diazepam vs. pentobarbital) over 6days following the induction of a stable anesthetized state in adult male Wistar rats, chronically instrumented for sleep recording. In order to compare the effect of both anesthetics in the physiological controls vs. the rats with impaired pedunculopontine tegmental nucleus (PPT) cholinergic innervation, during the operative procedure for the implantation of EEG and EMG electrodes, the bilateral PPT lesion was conducted using ibotenic acid (IBO). We have followed in particular post-anesthesia REM sleep. Our results show the distinct EEG microstructure of the motor cortex during the different stable anesthetized states, and their distinct impact on post-anesthesia REM sleep. In contrast to pentobarbital anesthesia, the ketamine/diazepam anesthesia potentiated the long-lasting post-anesthesia REM statewith higher muscle tone (REM1) vs. REM state with atonia (REM2). Whereas both anesthesias prolonged the post-anesthesia REM sleep duration, the long-term prolongation of the REM1 state was demonstrated only after the ketamine/diazepam anesthesia, first due to the increased number of REM1 episodes, and then due to the prolonged REM1 episodes duration. On the other hand, whereas both anesthetic regimens abolished the prolonged post-anesthesia REM/REM1 sleep and the EEG microstructure disorder during REM sleep, only the pentobarbital abolished the increased NREM/REM/NREM transitions, caused by the PPT lesion. In addition, in the PPT lesioned rats, the ketamine/diazepam anesthesia decreased the Wake/NREM/Wake transitions while the pentobarbital anesthesia decreased the Wake/REM/Wake transitions. Our present study suggests pentobarbital anesthesia as being highly beneficial for post-anesthesia REM sleep in the physiological condition as well as during PPT cholinergic neuropathology.


Assuntos
Analgésicos/toxicidade , Transtorno do Comportamento do Sono REM/etiologia , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Masculino , Núcleo Tegmental Pedunculopontino/lesões , Ratos , Ratos Wistar
17.
PeerJ ; 5: e3839, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970969

RESUMO

BACKGROUND: We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. METHODS: We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. RESULTS: We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3-F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric "alpha flow" within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric "alpha flow" represented a permanent consequence of the "hidden" stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. DISCUSSION: Our study indicates slower EEG alpha generation, synchronization and "flow" as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.

18.
Behav Brain Res ; 301: 273-86, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26756440

RESUMO

We studied the impact of aging during sleep in the rat models of Alzheimer's (AD) and Parkinson's (PD) disease cholinergic neuropathology to determine the possible different and earlier onset of age-related sleep disorder during the neurodegenerative diseases vs. healthy aging. We used the bilateral nucleus basalis (NB) and pedunculopontine tegmental nucleus (PPT) lesioned rats as the in vivo models of functionally distinct cholinergic neuropathology, and we followed the impact of aging on sleep architecture, the electroencephalographic (EEG) microstructure and motor control across sleep/wake states. Our results have shown for the first time that the earliest signs of aging during distinct cholinergic neuropathology were expressed through a different and topographically specific EEG microstructure during rapid eye movement sleep (REM). EEG delta amplitude attenuation within the sensorimotor cortex (SMCx) during REM was the earliest sign of aging in the NB lesion. EEG sigma amplitude augmentation within the motor cortex (MCx) during REM was the earliest sign of aging in the PPT lesion. In addition, aging was differently expressed through the SMCx drive alterations, but it was commonly expressed through the MCx drive alterations during all sleep/wake states. Our study provided evidence of distinct REM sleep disorders and sleep state related cortical drives as the signs of aging onset during functionally distinct cholinergic neuropathologies (NB lesion vs. PPT lesion).


Assuntos
Envelhecimento/fisiologia , Núcleo Basal de Meynert/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Sono REM/fisiologia , Animais , Eletrocorticografia , Eletrodos Implantados , Eletromiografia , Masculino , Movimento/fisiologia , Músculo Esquelético , Vias Neurais/fisiopatologia , Distribuição Aleatória , Ratos Wistar
19.
Sleep ; 28(5): 560-70, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16171269

RESUMO

STUDY OBJECTIVES: We hypothesized that 2 important neurotransmitters related to behavioral state control, serotonin and noradrenaline, could also be modulators of pedunculopontine tegmental nucleus (PPT)-induced respiratory dysrhythmia. DESIGN: We examined the impact of serotonin and noradrenaline at respiratory control sites in the PPT functionally identified by immediate apnea of 2.5- to 10-second duration, followed by increased variability of breath time (CVT(T)) (P < .04) after locally injecting glutamate in anesthetized rats. SETTING: Basic sleep and respiratory neurobiology laboratory. PARTICIPANTS: Sixteen adult, male Sprague-Dawley rats. MEASUREMENTS AND RESULTS: Glutamate-induced respiratory responses, including increases of total apnea duration and CVT(T), were not different between groups of rats in which we further tested monoaminergic modulatory effects (for CVT(T) P = .98, and for total apnea duration, P = .80). Serotonin or noradrenaline injected at the same sites as glutamate had equal impact on CVT(T) (P = .34) and on mean total apnea duration (P = .80), but pretreatment of PPT sites with serotonin blocked (remained equal to preinjection; P = .11), whereas pretreatment with noradrenaline potentiated (P = .04) the increment of respiratory-timing variability induced by glutamate. The serotonergic-blocking effect on glutamate-induced respiratory dysrhythmia was specific to the PPT: the respiratory responses induced by glutamate injection outside the PPT were not modulated by serotonin (for CVT(T), P = .46, and for mean apnea duration, P = .99). CONCLUSIONS: The opposed impact of serotonin and noradrenaline on PPT-induced respiratory dysrhythmia, in contrast to their convergent regulatory role in behavioral state control, suggests a functionally distinct role for the PPT in respiratory-pattern control independent of rapid eye movement sleep control.


Assuntos
Ácido Glutâmico/efeitos adversos , Norepinefrina/metabolismo , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Transtornos Respiratórios/induzido quimicamente , Serotonina/metabolismo , Anestesia , Animais , Ácido Glutâmico/administração & dosagem , Injeções , Masculino , Ratos , Ratos Sprague-Dawley
20.
Mech Ageing Dev ; 146-148: 12-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25773067

RESUMO

We followed the impact of healthy aging on cortical drive during sleep in rats by using the corticomuscular coherence (CMC). We employed the chronic electrodes implantation for sleep recording in adult, male Wistar rats, and followed the aging impact during sleep from 3 to 5.5 months age. We have analyzed the sleep/wake states architecture, and the sleep/wake state related EEG microstructure and CMCs. We evidenced the topographically distinct impact of aging on sleep/wake states architecture within the sensorimotor (SMCx) vs. motor cortex (MCx) from 4.5 to 5.5 months age. Healthy aging consistently altered only the SMCx sleep/wake states architecture, and increased the delta and beta CMCs through both cortical drives during Wake, but only through the MCx drive during REM. According to the delta and beta CMCs values, aging impact through the SMCx drive was opposite, but it was convergent through the MCx drive during Wake vs. REM, and there was a dual and inverse mode for the motor control during REM.


Assuntos
Envelhecimento/fisiologia , Córtex Motor/fisiologia , Córtex Sensório-Motor/fisiologia , Sono/fisiologia , Animais , Masculino , Ratos , Ratos Wistar , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa