Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
FASEB J ; 34(8): 10250-10266, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557799

RESUMO

The transcription factor ZBED6 acts as a repressor of Igf2 and affects directly or indirectly the transcriptional regulation of thousands of genes. Here, we use gene editing in mouse C2C12 myoblasts and show that ZBED6 regulates Igf2 exclusively through its binding site 5'-GGCTCG-3' in intron 1 of Igf2. Deletion of this motif (Igf2ΔGGCT ) or complete ablation of Zbed6 leads to ~20-fold upregulation of the IGF2 protein. Quantitative proteomics revealed an activation of Ras signaling pathway in both Zbed6-/- and Igf2ΔGGCT myoblasts, and a significant enrichment of mitochondrial membrane proteins among proteins showing altered expression in Zbed6-/- myoblasts. Both Zbed6-/- and Igf2ΔGGCT myoblasts showed a faster growth rate and developed myotube hypertrophy. These cells exhibited an increased O2 consumption rate, due to IGF2 upregulation. Transcriptome analysis revealed ~30% overlap between differentially expressed genes in Zbed6-/- and Igf2ΔGGCT myotubes, with an enrichment of upregulated genes involved in muscle development. In contrast, ZBED6-overexpression in myoblasts led to cell apoptosis, cell cycle arrest, reduced mitochondrial activities, and ceased myoblast differentiation. The similarities in growth and differentiation phenotypes observed in Zbed6-/- and Igf2ΔGGCT myoblasts demonstrates that ZBED6 affects mitochondrial activity and myogenesis largely through its regulation of IGF2 expression. This study adds new insights how the ZBED6-Igf2 axis affects muscle metabolism.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Mioblastos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica/genética , Fator de Crescimento Insulin-Like II/genética , Camundongos , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transcrição Gênica/genética , Transcriptoma/genética , Regulação para Cima/genética
2.
FASEB J ; 33(3): 3510-3522, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30462531

RESUMO

The naturally occurring quassinoid compound brusatol improves the survival of insulin-producing cells when exposed to the proinflammatory cytokines IL-1ß and IFN-γ in vitro. The aim of the present study was to investigate whether brusatol also promotes beneficial effects in mice fed a high-fat diet (HFD), and if so, to study the mechanisms by which brusatol acts. In vivo, we observed that the impaired glucose tolerance of HFD-fed male C57BL/6 mice was counteracted by a 2 wk treatment with brusatol. Brusatol treatment improved both ß-cell function and peripheral insulin sensitivity of HFD-fed mice. In vitro, brusatol inhibited ß-cell total protein and proinsulin biosynthesis, with an ED50 of ∼40 nM. In line with this, brusatol blocked cytokine-induced iNOS protein expression via inhibition of iNOS mRNA translation. Brusatol may have affected protein synthesis, at least in part, via inhibition of eukaryotic initiation factor 5A (eIF5A) hypusination, as eIF5A spermidine association and hypusination in RIN-5AH cells was reduced in a dose- and time-dependent manner. The eIF5A hypusination inhibitor GC7 promoted a similar effect. Both brusatol and GC7 protected rat RIN-5AH cells against cytokine-induced cell death. Brusatol reduced eIF5A hypusination and cytokine-induced cell death in EndoC-ßH1 cells as well. Finally, hypusinated eIF5A was reduced in vivo by brusatol in islet endocrine and endothelial islet cells of mice fed an HFD. The results of the present study suggest that brusatol improves glucose intolerance in mice fed an HFD, possibly by inhibiting protein biosynthesis and eIF5A hypusination.-Turpaev, K., Krizhanovskii, C., Wang, X., Sargsyan, E., Bergsten, P., Welsh, N. The protein synthesis inhibitor brusatol normalizes high-fat diet-induced glucose intolerance in male C57BL/6 mice: role of translation factor eIF5A hypusination.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/tratamento farmacológico , Fatores de Iniciação de Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Quassinas/farmacologia , Proteínas de Ligação a RNA/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Fator de Iniciação de Tradução Eucariótico 5A
3.
Pediatr Diabetes ; 20(7): 880-891, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31271247

RESUMO

OBJECTIVE: To delineate potential mechanisms for fasting hyperglucagonemia in childhood obesity by studying the associations between fasting plasma glucagon concentrations and plasma lipid parameters and fat compartments. METHODS: Cross-sectional study of children and adolescents with obesity (n = 147) and lean controls (n = 43). Differences in free fatty acids (FFAs), triglycerides, insulin, and fat compartments (quantified by magnetic resonance imaging) across quartiles of fasting plasma glucagon concentration were analyzed. Differences in oral glucose tolerance test (OGTT) glucagon response was tested in high vs low FFAs, triglycerides, and insulin. Human islets of Langerhans were cultured at 5.5 mmol/L glucose and in the absence or presence of a FFA mixture with total FFA concentration of 0.5 mmol/L and glucagon secretion quantified. RESULTS: In children with obesity, the quartile with the highest fasting glucagon had higher insulin (201 ± 174 vs 83 ± 39 pmol/L, P < .01), FFAs (383 ± 52 vs 338 ± 109 µmol/L, P = .02), triglycerides (1.5 ± 0.9 vs 1.0 ± 0.7 mmol/L, P < .01), visceral adipose tissue volume (1.9 ± 0.8 vs 1.2 ± 0.3 dm3 , P < .001), and a higher prevalence of impaired glucose tolerance (IGT; 41% vs 8%, P = .01) than the lowest quartile. During OGTT, children with obesity and high insulin had a worse suppression of glucagon during the first 10 minutes after glucose intake. Glucagon secretion was 2.6-fold higher in islets treated with FFAs than in those not treated with FFAs. CONCLUSIONS: Hyperglucagonemia in childhood obesity is associated with hyperinsulinemia, high plasma FFAs, high plasma triglycerides, visceral adiposity, and IGT. The glucagonotropic effect of FFAs on isolated human islets provides a potential mechanism linking high fasting plasma FFAs and glucagon levels.


Assuntos
Adiposidade/fisiologia , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Intolerância à Glucose/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade Abdominal/metabolismo , Obesidade Infantil/metabolismo , Adolescente , Estudos de Casos e Controles , Células Cultivadas , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Glucagon/farmacologia , Intolerância à Glucose/sangue , Intolerância à Glucose/complicações , Humanos , Gordura Intra-Abdominal/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Obesidade Abdominal/complicações , Obesidade Infantil/complicações , Regulação para Cima
4.
J Proteome Res ; 17(11): 3824-3836, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30183308

RESUMO

In obese children with high circulating concentrations of free fatty acid palmitate, we have observed that insulin levels at fasting and in response to a glucose challenge were several times higher than in obese children with low concentrations of the fatty acid as well as in lean controls. Declining and even insufficient insulin levels were observed in obese adolescents with high levels of the fatty acid. In isolated human islets exposed to palmitate we have observed insulin hypersecretion after 2 days exposure. In contrast, insulin secretion from the islets was reduced after 7 days culture in the presence of the fatty acid. This study aims at identifying islet-related biological events potentially linked with the observed insulin hypersecretion and later secretory decline in these obese children and adolescents using the islet model. We analyzed protein expression data obtained from human islets exposed to elevated palmitate levels for 2 and 7 days by an improved methodology for statistical analysis of differentially expressed proteins. Protein profiling of islet samples by liquid chromatography-tandem mass spectrometry identified 115 differentially expressed proteins (DEPs). Several DEPs including sorcin were associated with increased glucose-stimulated insulin secretion in islets after 2 days of exposure to palmitate. Similarly, several metabolic pathways including altered protein degradation, increased autophagy, altered redox condition, and hampered insulin processing were coupled to the functional impairment of islets after 7 days of culture in the presence of palmitate. Such biological events, once validated in the islets, may give rise to novel treatment strategies aiming at normalizing insulin levels in obese children with high palmitate levels, which may reduce or even prevent obesity-related type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/genética , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Obesidade/genética , Ácido Palmítico/farmacologia , Adolescente , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Criança , Cromatografia Líquida , Biologia Computacional/métodos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Jejum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Humanos , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Ácido Palmítico/metabolismo , Proteólise , Proteômica/métodos , Espectrometria de Massas em Tandem , Técnicas de Cultura de Tecidos
5.
BMC Genomics ; 19(1): 629, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134843

RESUMO

BACKGROUND: Long-term exposure to elevated levels of free fatty acids (FFAs) is deleterious for beta-cell function and may contribute to development of type 2 diabetes mellitus (T2DM). Whereas mechanisms of impaired glucose-stimulated insulin secretion (GSIS) in FFA-treated beta-cells have been intensively studied, biological events preceding the secretory failure, when GSIS is accentuated, are poorly investigated. To identify these early events, we performed genome-wide analysis of gene expression in isolated human islets exposed to fatty acid palmitate for different time periods. RESULTS: Palmitate-treated human islets showed decline in beta-cell function starting from day two. Affymetrix Human Transcriptome Array 2.0 identified 903 differentially expressed genes (DEGs). Mapping of the genes onto pathways using KEGG pathway enrichment analysis predicted four islet biology-related pathways enriched prior but not after the decline of islet function and three pathways enriched both prior and after the decline of islet function. DEGs from these pathways were analyzed at the transcript level. The results propose that in palmitate-treated human islets, at early time points, protective events, including up-regulation of metallothioneins, tRNA synthetases and fatty acid-metabolising proteins, dominate over deleterious events, including inhibition of fatty acid detoxification enzymes, which contributes to the enhanced GSIS. After prolonged exposure of islets to palmitate, the protective events are outweighed by the deleterious events, which leads to impaired GSIS. CONCLUSIONS: The study identifies temporal order between different cellular events, which either promote or protect from beta-cell failure. The sequence of these events should be considered when developing strategies for prevention and treatment of the disease.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Ácido Palmítico/farmacologia , Adulto , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Cultura Primária de Células , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
6.
Biochim Biophys Acta ; 1861(9 Pt A): 1151-1160, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344025

RESUMO

Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids.


Assuntos
Linfócitos B/metabolismo , Estresse do Retículo Endoplasmático/genética , Insulinoma/tratamento farmacológico , Proteômica , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linhagem Celular Tumoral , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Insulinoma/metabolismo , Insulinoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Oleico/administração & dosagem , Ácido Oleico/metabolismo , Oxirredução , Palmitatos/administração & dosagem , Palmitatos/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Espectrometria de Massas em Tandem
7.
Biochim Biophys Acta ; 1853(12): 3248-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26408932

RESUMO

Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion.


Assuntos
Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Secreção de Insulina , Camundongos , Mitocôndrias/metabolismo , Transdução de Sinais
8.
Pediatr Res ; 80(2): 267-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27064244

RESUMO

BACKGROUND: The prevalence of obesity-related diabetes in childhood is increasing and circulating levels of nonesterified fatty acids may constitute a link. Here, the association between palmitate and insulin secretion was investigated in vivo and in vitro. METHODS: Obese and lean children and adolescents (n = 80) were included. Palmitate was measured at fasting; insulin and glucose during an oral glucose tolerance test (OGTT). Human islets were cultured for 0 to 7 d in presence of 0.5 mmol/l palmitate. Glucose-stimulated insulin secretion (GSIS), insulin content and apoptosis were measured. RESULTS: Obese subjects had fasting palmitate levels between 0.10 and 0.33 mmol/l, with higher average levels compared to lean subjects. While obese children with elevated palmitate (>0.20 mmol/l) had accentuated insulin levels during OGTT, obese adolescents with high palmitate had delayed first-phase insulin response. In human islets exposed to palmitate for 2 d GSIS was twofold enhanced, but after 7 d attenuated. Intracellular insulin content decreased time-dependently in islets cultured in the presence of palmitate and cleaved caspase 3 increased. CONCLUSION: The rapid accentuated and delayed insulin secretory responses observed in obese children and adolescents, respectively, with high palmitate levels may reflect changes in islet secretory activity and integrity induced by extended exposure to the fatty acid.


Assuntos
Hiperinsulinismo/sangue , Células Secretoras de Insulina/citologia , Palmitatos/sangue , Adolescente , Adulto , Idoso , Células Cultivadas , Criança , Pré-Escolar , Estudos Transversais , Complicações do Diabetes/sangue , Ácidos Graxos não Esterificados/química , Feminino , Glucose/farmacologia , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/complicações , Obesidade Infantil , Fatores de Tempo
9.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809486

RESUMO

KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Simulação de Dinâmica Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp
10.
Lipids Health Dis ; 10: 115, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21745359

RESUMO

BACKGROUND: Prolonged elevated levels of lipids have negative effects on beta-cell function and mass (lipotoxicity). To what extent exposure to high glucose concentration is important in the harmful effects of lipids (glucolipotoxicity) has been debated. METHODS: We addressed beta-cell lipotoxicity by measuring apoptosis in isolated intact control human islets and insulin-secreting cell lines MIN6 and INS-1E cultured in the presence of palmitate and low (5.5 mM) or high (25 mM) glucose for 48 hours. RESULTS: In both cell lines and human islets palmitate induced apoptosis after culture at low glucose. Palmitate-induced apoptosis was not increased after culture at high compared to low glucose in human islets and MIN6 cells but glucose-induced rise in apoptosis was observed in INS-1E cells. The rise in apoptosis in INS-1E cells was partially reversed by inclusion of AMPK-agonist AICAR. When CPT1-inhibitor etomoxir was included during culture at low glucose palmitate-triggered apoptosis was accentuated both in the islets and the cell lines. Palmitate oxidation in human islets and the cell lines was comparable after culture at low glucose. At high glucose, palmitate oxidation was reduced by 30% in human islets and MIN6 cells but by 80% in INS-1E cells. In INS-1E cells, AICAR increased oxidation of palmitate. Presence of etomoxir at low glucose decreased palmitate oxidation both in the islets and the cell lines. CONCLUSIONS: In summary, lipotoxicity is evident not only in the presence of high but also low glucose concentrations. Additional effects of glucose are prominent in INS-1E but not in MIN6 cells and intact control human islets, which are able to efficiently oxidize fatty acids at high glucose and in this way avoid glucolipotoxicity.


Assuntos
Glucose/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Palmitatos/toxicidade , Acetil-CoA Carboxilase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA , Inibidores Enzimáticos/farmacologia , Compostos de Epóxi/farmacologia , Humanos , Ilhotas Pancreáticas/enzimologia , Camundongos , Oxirredução , Palmitatos/metabolismo , Ratos , Técnicas de Cultura de Tecidos
11.
Biochem Biophys Res Commun ; 375(4): 517-21, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18706397

RESUMO

Effects of non-esterified fatty acids (FAs) are accentuated when applied together with elevated glucose through preferential use of glucose as fuel, which leads to decreased oxidation of FAs. We examined how over-expression of the mitochondrial FA transporter carnitine palmitoyltransferase 1 (CPT1) affects glucose-stimulated insulin secretion (GSIS), apoptosis and ER stress in INS-1E cells cultured in the presence of elevated levels of glucose and palmitate. INS-1E cells were infected with Tet-ON regulated adenovirus containing CPT1 and cultured for 48h in the presence of 0.5mM palmitate and 20mM glucose. Over-expressing CPT1 lowered basal insulin secretion in a dose-dependent manner thereby improving GSIS from INS-1E cells. Also, apoptosis was alleviated and ER-stress markers p-eIF2alpha and CHOP were decreased in cells over-expressing CPT1. We conclude that regulated over-expression of CPT1 is beneficial for glucolipotoxic beta-cells.


Assuntos
Carnitina O-Palmitoiltransferase/biossíntese , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Palmitatos/metabolismo , Adenoviridae , Animais , Apoptose , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Ácidos Graxos não Esterificados/toxicidade , Glucose/toxicidade , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Palmitatos/farmacologia , Ratos , Fator de Transcrição CHOP/metabolismo
12.
Mol Carcinog ; 47(11): 886-92, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18395818

RESUMO

Cancer cells are committed to an actively secretory state that facilitates communication with their microenvironment. We have addressed the role of ERp29, a novel endoplasmic reticulum secretion factor in mammary carcinogenesis using MCF-7 human breast cancer cells as a model. Xenografts originating from cells stably transfected with dominant-negative form of ERp29 were smaller and better differentiated than those derived from cells overexpressing wild-type ERp29. Similar effects were observed by siRNA-mediated ERp29 silencing in xenografts. However, unlike xenografts, the modulation of ERp29 in vitro did not affect the rate of cell proliferation. In addition, we have evaluated the expression of ERp29 in the resting and lactating mammary glands of mice as well as in the human primary breast tumors. About 25% of breast cancers and also lactating mammary glands were expressing ERp29 while the resting glands did not. Taken together these data suggest the active involvement of ERp29 in the malignant conversion of mammary epithelial cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Transplante Heterólogo/patologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Camundongos Nus , Ratos , Regulação para Cima
13.
J Mol Endocrinol ; 61(3): 91-99, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307162

RESUMO

Elevated levels of palmitate accentuate glucose-stimulated insulin secretion (GSIS) after short-term and cause beta-cell dysfunction after prolonged exposure. We investigated whether metformin, the first-line oral drug for treatment of T2DM, has beneficial effects on FFA-treated human islets and the potential mechanisms behind the effects. Insulin secretion, oxygen consumption rate (OCR), AMPK activation, endoplasmic reticulum (ER) stress and apoptosis were examined in isolated human islets after exposure to elevated levels of palmitate in the absence or presence of metformin. Palmitate exposure doubled GSIS after 2 days but halved after 7 days compared with control. Inclusion of metformin during palmitate exposure normalized insulin secretion both after 2 and 7 days. After 2-day exposure to palmitate, OCR and the marker of the adaptive arm of ER stress response (sorcin) were significantly raised, whereas AMPK phosphorylation, markers of pro-apoptotic arm of ER stress response (p-EIF2α and CHOP) and apoptosis (cleaved caspase 3) were not affected. Presence of metformin during 2-day palmitate exposure normalized OCR and sorcin levels. After 7-day exposure to palmitate, OCR and sorcin were not significantly different from control level, p-AMPK was reduced and p-EIF2α, CHOP and cleaved caspase 3 were strongly upregulated. Presence of metformin during 7-day culture with palmitate normalized the level of p-AMPK, p-EIF2α, CHOP and cleaved caspase 3 but significantly increased the level of sorcin. Our study demonstrates that metformin prevents early insulin hypersecretion and later decrease in insulin secretion from palmitate-treated human islets by utilizing different mechanisms.


Assuntos
Ácidos Graxos/farmacologia , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Metformina/farmacologia , Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Técnicas de Cultura de Órgãos , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
14.
PLoS One ; 12(4): e0176391, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448538

RESUMO

Studies on the pathophysiology of type 2 diabetes mellitus (T2DM) have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/ or confirm reported mechanisms of lipotoxicity. To this end isolated human pancreatic islets, exposed to chronically elevated palmitate concentrations for 0, 2 and 7 days, were functionally characterized and their levels of multiple targeted lipid and untargeted protein species determined. Glucose-stimulated insulin secretion from the islets increased on day 2 and decreased on day 7. At day 7 islet insulin content decreased and the proinsulin to insulin content ratio doubled. Amounts of cholesterol, stearic acid, C16 dihydroceramide and C24:1 sphingomyelin, obtained from the lipidomic screen, increased time-dependently in the palmitate-exposed islets. The proteomic screen identified matching changes in proteins involved in lipid biosynthesis indicating up-regulated cholesterol and lipid biosynthesis in the islets. Furthermore, proteins associated with immature secretory granules were decreased when palmitate exposure time was increased despite their high affinity for cholesterol. Proteins associated with mature secretory granules remained unchanged. Pathway analysis based on the protein and lipid expression profiles implicated autocrine effects of insulin in lipotoxicity. Taken together the study demonstrates that combining different omics approaches has potential in mapping of multiple simultaneous cellular events. However, it also shows that challenges exist for effectively combining lipidomics and proteomics in primary cells. Our findings provide insight into how saturated fatty acids contribute to islet cell dysfunction by affecting the granule maturation process and confirmation in human islets of some previous findings from rodent islet and cell-line studies.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Palmitatos/farmacologia , Proteômica , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Proinsulina/metabolismo , Fatores de Tempo
15.
Nutr Metab (Lond) ; 13(1): 59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582778

RESUMO

BACKGROUND: Free fatty acids (FFAs) acutely stimulate insulin secretion from pancreatic islets. Conflicting results have been presented regarding this effect at non-stimulatory glucose concentration, however. The aim of our study was to investigate how long-chain FFAs affect insulin secretion from isolated human pancreatic islets in the presence of physiologically fasting glucose concentrations and to explore the contribution of mitochondria to the effects on secretion. METHODS: Insulin secretion from human pancreatic islets was measured from short-term static incubation or perfusion system at fasting glucose concentration (5.5 mM) with or without 4 different FFAs (palmitate, palmitoleate, stearate, and oleate). The contribution of mitochondrial metabolism to the effects of fatty acid-stimulated insulin secretion was explored. RESULTS: The average increase in insulin secretion, measured from statically incubated and dynamically perifused human islets, was about 2-fold for saturated free fatty acids (SFAs) (palmitate and stearate) and 3-fold for mono-unsaturated free fatty acids (MUFAs) (palmitoleate and oleate) compared with 5.5 mmol/l glucose alone. Accordingly, MUFAs induced 50 % and SFAs 20 % higher levels of oxygen consumption compared with islets exposed to 5.5 mmol/l glucose alone. The effect was due to increased glycolysis. When glucose was omitted from the medium, addition of the FFAs did not affect oxygen consumption. However, the FFAs still stimulated insulin secretion from the islets although secretion was more than halved. The mitochondria-independent action was via fatty acid metabolism and FFAR1/GPR40 signaling. CONCLUSIONS: The findings suggest that long-chain FFAs acutely induce insulin secretion from human islets at physiologically fasting glucose concentrations, with MUFAs being more potent than SFAs, and that this effect is associated with increased glycolytic flux and mitochondrial respiration.

16.
Endocrinology ; 156(3): 802-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535826

RESUMO

Prolonged exposure to palmitate impairs ß-cell function and mass. One of the proposed mechanisms is alteration in ceramide (Cer) generation. In the present study, exposure to palmitate induced the level of palmitoyl transferase and Cer synthases, enzymes of the Cer de novo and salvage pathways, and doubled total Cer levels, which was associated with decreased insulin secretion and augmented apoptosis in MIN6 cells and human islets. By inhibiting enzymes of the pathways pharmacologically with myriocin (ISP-1) or fumonisin B1 or by small interfering RNA (siRNA), we showed that Cer(14:0), Cer(16:0), Cer(20:1), and Cer(24:0) species, generated by the salvage pathway, are linked to the harmful effect of palmitate on ß-cells. Oleate attenuates negative effects of palmitate on ß-cells. When oleate was included during culture of MIN6 cells with palmitate, the palmitate-induced up-regulation of the enzymes of the de novo and salvage pathways was prevented resulting in normalized levels of all Cer species except Cer(20:1). Our data suggest that enhanced Cer generation in response to elevated palmitate levels involves both de novo and salvage pathways. However, the negative effects of palmitate on ß-cells are attributed to generation of Cer species Cer(14:0), Cer(16:0), and Cer(24:0) via acylation of sphingosine.


Assuntos
Ceramidas/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Palmitatos/farmacologia , Esfingosina/metabolismo , Acilação , Animais , Linhagem Celular , Ceramidas/química , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Camundongos , Ácido Oleico
17.
Gene ; 285(1-2): 127-39, 2002 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12039039

RESUMO

ERp29 is a soluble protein localized in the endoplasmic reticulum (ER) of eukaryotic cells, which is conserved in all mammalian species. The N-terminal domain of ERp29 displays sequence and structural similarity to the protein disulfide isomerase despite the lack of the characteristic double cysteine motif. Although the exact function of ERp29 is not yet known, it was hypothesized that it may facilitate folding and/or export of secretory proteins in/from the ER. ERp29 is induced by ER stress, i.e. accumulation of unfolded proteins in the ER. To gain an insight into the mechanisms regulating ERp29 expression we have cloned and characterized the rat ERp29 gene and studied in details its distribution in human tissues. Comparison with the murine and human genes and phylogenetic analysis demonstrated common origin and close ortholog relationships of these genes. Additionally, we have cloned approximately 3 kb of the 5'-flanking region of the ERp29 gene and functionally characterized its promoter. Such characteristics of the promoter as GC-rich sequence, absence of TATA-box, multiple transcription start sites taken together with the ubiquitous gene expression, reaching maximum levels in the specialized secretory tissues, indicate that ERp29 belongs to the group of the constitutively expressed housekeeping genes. A 337 bp fragment of the 5' flank was identified as a core promoter sufficient for the transcriptional activation of the gene. Gel mobility shift assay indicated interaction of the predicted GC and E box elements within the core promoter with Sp1/Sp3 and USF1/USF2 transcription factors, respectively, suggesting their key role in the basal expression of the gene.


Assuntos
Proteínas de Choque Térmico/genética , Regiões Promotoras Genéticas/genética , Células 3T3 , Região 5'-Flanqueadora/genética , Animais , Sequência de Bases , Células CHO , Linhagem Celular , Cricetinae , DNA/química , DNA/genética , Éxons , Feminino , Perfilação da Expressão Gênica , Genes/genética , Células HeLa , Humanos , Íntrons , Luciferases/genética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sítio de Iniciação de Transcrição , Células Tumorais Cultivadas
18.
Endocrinology ; 154(11): 4078-88, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24035997

RESUMO

Free fatty acids (FFAs) have pleiotropic effects on the pancreatic ß-cell. Although acute exposure to FFAs stimulates glucose-stimulated insulin secretion (GSIS), prolonged exposure impairs GSIS and causes apoptosis. FFAs exert their effects both via intracellular metabolism and interaction with the FFA receptor 1 (FFAR1/GPR40). Here we studied the role of FFAR1 in acute and long-term effects of palmitate on GSIS and insulin content in isolated human islets by using the FFAR1 agonist TAK-875 and the antagonist ANT203. Acute palmitate exposure potentiated GSIS approximately 3-fold, whereas addition of the antagonist decreased this potentiation to approximately 2-fold. In the absence of palmitate, the agonist caused a 40% increase in GSIS. Treatment with palmitate for 7 days decreased GSIS to 70% and insulin content to 25% of control level. These negative effects of long-term exposure to palmitate were ameliorated by FFAR1 inhibition and further aggravated by additional stimulation of the receptor. In the absence of extracellularly applied palmitate, long-term treatment with the agonist caused a modest increase in GSIS. The protective effect of FFAR1 inhibition was verified by using FFAR1-deficient MIN6 cells. Improved ß-cell function by the antagonist was paralleled by the decreased apoptosis and lowered oxidation of palmitate, which may represent the potential mechanisms of protection. We conclude that FFAR1 in the pancreatic ß-cell plays a substantial role not only in acute potentiation of GSIS by palmitate but also in the negative long-term effects of palmitate on GSIS and insulin content.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Benzofuranos/farmacologia , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glucose/farmacologia , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Estrutura Molecular , Ácido Palmítico/administração & dosagem , Pirimidinas/química , Pirimidinas/farmacologia , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Sulfonas/farmacologia
19.
Nutr Metab (Lond) ; 8: 70, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21978671

RESUMO

BACKGROUND: Elevated levels of lipids are detrimental for beta-cell function and mass. One of the mechanisms of how fatty acids induce apoptosis is development of the unfolded protein response (UPR). It is still far from understood how fatty acids activate the UPR, however. METHODS: We examined how palmitate-induced activation of the UPR was affected by altering the metabolism of the fatty acid in insulin-secreting INS-1E and MIN6 cell lines and intact human islets. To increase oxidation, we used low glucose (5.5 mM) or AICAR; and to reduce oxidation, we used high glucose (25 mM) or etomoxir. UPR was measured after 3, 24 and 48 hours of palmitate treatment. RESULTS: Modulation of palmitate oxidation by either glucose or the pharmacological agents did not affect palmitate-induced UPR activation. CONCLUSION: Our finding suggests that other factors than oxidation of palmitate play a role in the activation of UPR in fatty acid-treated beta-cells.

20.
J Proteomics ; 73(6): 1148-55, 2010 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-20117255

RESUMO

Elevated blood levels of glucose and lipids in individuals with type 2 diabetes mellitus have been observed to cause impairment of insulin secretion from pancreatic beta-cells. Chronic exposure to either of the circulating fatty acid oleate or palmitate has different effects on the beta-cell. Whereas palmitate causes functional impairment of the beta-cell and apoptosis, oleate has only minor negative effects on beta-cell function and mass. The aim of the present study was to delineate mechanisms by which the fatty acids affect the beta-cell differently. In particular, the aim was to identify beta-cell proteins exclusively regulated by palmitate. INS-1E cells were cultured for 24h in medium supplemented with palmitate or oleate. After culture, cells were lysed and subjected to two-dimensional gel electrophoresis. Proteins specifically regulated by palmitate were excised from the gel and identified by peptide mass fingerprinting using MALDI-TOF MS. Proteins exclusively regulated by palmitate were classified into proteins of carbohydrate or protein metabolism and Ca(2+) or mRNA binding proteins. The specific palmitate-induced down-regulation of enzymes of glycolysis, proteins of protein turnover and anti-apoptotic protein may contribute to explain the different effects exerted by palmitate and oleate on beta-cell function and mass.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Palmitatos/farmacologia , Proteômica/métodos , Diabetes Mellitus Tipo 2/metabolismo , Eletroforese em Gel Bidimensional/métodos , Glicólise , Humanos , Processamento de Imagem Assistida por Computador , Células Secretoras de Insulina/citologia , Espectrometria de Massas/métodos , Modelos Biológicos , Ácido Oleico/química , Ácido Palmítico/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa