Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nature ; 583(7815): 242-248, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641817

RESUMO

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2-4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


Assuntos
Agricultura , Dióxido de Carbono/isolamento & purificação , Produtos Agrícolas , Sedimentos Geológicos/química , Aquecimento Global/prevenção & controle , Objetivos , Silicatos/química , Atmosfera/química , Brasil , China , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Aquecimento Global/economia , Índia , Ferro/isolamento & purificação , Mineração , Política , Probabilidade , Silicatos/isolamento & purificação , Aço/isolamento & purificação , Temperatura , Fatores de Tempo , Estados Unidos
2.
Environ Res ; 219: 115066, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528044

RESUMO

Metal halide perovskite solar cells (PSCs) have gained extensive attention in the field of solar photovoltaic technology over the past few years. Despite being a remarkable alternative to fossil fuels, solar cells may have detrimental effects on the environment and human health owing to the use of toxic materials during manufacturing. Although modern metal-halide-based PSCs are stable and have encapsulation to prevent the release of potentially toxic materials into the environment, their destruction due to strong winds, hail, snow, landslides, fires, or waste disposal can result in the exposure of these materials to the environment. This may lead to the contamination of soil and groundwater, and uptake of potentially toxic elements by plants, subsequently affecting humans and other living organisms via food chain contamination. Despite worldwide concern, the environmental and ecotoxicological impacts of metal-halide-based PSCs have not been comprehensively surveyed. This review summarizes and critically evaluates the current status of metal-halide-based PSC production and its impact on environmental sustainability, food security, and human health. Furthermore, safe handling and disposal methods for the waste generated from metal-halide-based PSCs are proposed, with a focus on recycling and reuse. Although some studies have suggested that the amount of lead released from metal halide PSCs is far below the maximum permissible levels in most soils, a clear conclusion cannot be reached until real contamination scenarios are assessed under field conditions. Precautions must be taken to minimize environmental contamination throughout the lifecycle of PSCs until nontoxic and similarly performing alternative solar photovoltaic products are developed.


Assuntos
Compostos de Cálcio , Metais , Humanos , Óxidos , Solo
3.
Environ Res ; 227: 115799, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015300

RESUMO

Veterinary antibiotics (VAs) are emerging contaminants in soils as they may pose high risks to the ecosystem and human health. Identifying VAs accumulation in soils is essential for assessing their potential risks. Therefore, we investigated the distribution of VAs in soils from vegetable fields and evaluated their potential ecological and antimicrobial resistance risks in the Chongqing region of the Three Gorges Reservoir area, China. Results indicated that twenty-six species of VAs, including nine sulfonamides (SAs), seven quinolones (QNs), four tetracyclines (TCs), four macrolides (MLs), and two other species of VAs were detected in soils, with their accumulative levels ranging from 1.4 to 3145.7 µg kg-1. TCs and QNs were the dominant VAs species in soils with high detection frequencies (100% TCs and 80.6% for QNs) and accumulative concentration (up to 1195 µg kg-1 for TCs and up to 485 µg kg-1 for QNs). Risk assessment indices showed that VAs (specifically SAs, TCs, and QNs) in most vegetable soils would pose a medium to high risk to the ecosystem and antimicrobial resistance. Mixture of VAs posed a higher risk to soil organisms, antimicrobial resistance, and plants than to aquatic organisms. Modeling analysis indicated that socioeconomic conditions, farmers' education levels, agricultural practices, and soil properties were the main factors governing VAs accumulation and environmental risks. Farmers with a high educational level owned large-scale farms and were more willing to use organic fertilizers for vegetable production, which eventually led to high VAs accumulation in vegetable soil. These findings would provide a reference for sustainable agricultural and environmental production under the current scenario of chemical fertilizer substitution by organic products and green agricultural development.


Assuntos
Quinolonas , Poluentes do Solo , Humanos , Antibacterianos/análise , Solo/química , Verduras/química , Ecossistema , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Tetraciclinas/análise , Sulfanilamida/análise , China , Medição de Risco , Fertilizantes/análise
4.
Ecotoxicol Environ Saf ; 262: 115175, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379666

RESUMO

The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.

5.
Environ Sci Technol ; 56(7): 4187-4198, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289167

RESUMO

Biochar application is a promising strategy for the remediation of contaminated soil, while ensuring sustainable waste management. Biochar remediation of heavy metal (HM)-contaminated soil primarily depends on the properties of the soil, biochar, and HM. The optimum conditions for HM immobilization in biochar-amended soils are site-specific and vary among studies. Therefore, a generalized approach to predict HM immobilization efficiency in biochar-amended soils is required. This study employs machine learning (ML) approaches to predict the HM immobilization efficiency of biochar in biochar-amended soils. The nitrogen content in the biochar (0.3-25.9%) and biochar application rate (0.5-10%) were the two most significant features affecting HM immobilization. Causal analysis showed that the empirical categories for HM immobilization efficiency, in the order of importance, were biochar properties > experimental conditions > soil properties > HM properties. Therefore, this study presents new insights into the effects of biochar properties and soil properties on HM immobilization. This approach can help determine the optimum conditions for enhanced HM immobilization in biochar-amended soils.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Carvão Vegetal , Aprendizado de Máquina , Solo , Poluentes do Solo/análise
6.
Environ Res ; 204(Pt B): 112125, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34592252

RESUMO

Hexavalent chromium (Cr[VI]) is one of the major environmental concerns due to its excessive discharge through effluents from the leather tanning industry. Peanut production leads to the generation of residual shells as waste calling for sustainable disposal. In this study, we employed an innovative approach of applying peanut-shell-derived pristine and engineered biochar for the remediation of Cr-contaminated wastewater and soil. The peanut shell waste was converted to biochar, which was further engineered with cetyltrimethylammonium bromide (CTAB, a commonly used cationic surfactant). The biochars were then used for the adsorption and immobilization of Cr(VI) in water and soil, respectively. The adsorption experiments demonstrated high Cr(VI) removal efficiency for the engineered biochar (79.35%) compared with the pristine biochar (37.47%). The Langmuir model best described the Cr(VI) adsorption onto the biochars (R2 > 0.97), indicating monolayer adsorption. Meanwhile, the adsorption kinetics indicated that chemisorption was the dominant mechanism of interaction between the Cr(VI) and the biochars, as indicated by the best fitting to the pseudo-second-order model (R2 > 0.98). Adsorption through the fixed-bed column also presented higher Cr(VI) adsorption onto the engineered biochar (qeq = 22.93 mg g-1) than onto the pristine biochar (qeq = 18.54 mg g-1). In addition, the desorption rate was higher for the pristine biochar column (13.83 mg g-1) than the engineered biochar column (10.45 mg g-1), indicating that Cr(VI) was more strongly adsorbed onto the engineered biochar. A higher immobilization of Cr(VI) was observed in the soil with the engineered biochar than with the pristine biochar, as was confirmed by the significant decreases in the Cr(VI) bioavailability (92%), leachability (100%), and bioaccessibility (97%) compared with the control (soil without biochar). The CTAB-engineered biochar could thus potentially be used as an efficient adsorbent for the removal and the immobilization of Cr(VI) in water and soil, respectively.


Assuntos
Arachis , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo , Cinética , Solo , Água , Poluentes Químicos da Água/análise
7.
Environ Res ; 209: 112734, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35065936

RESUMO

Microplastics are emerging contaminants and there has been growing concern regarding their impacts on aquatic and terrestrial environments. This review provides a comprehensive overview of the current knowledge regarding the sources, occurrences, fates, and risks associated with microplastic contamination in terrestrial environments. This contamination occurs via multiple sources, including primary microplastics (including synthetic materials) and secondary microplastics (derived from the breakdown of larger plastic particles). Microplastic contamination can have both beneficial and detrimental effects on soil properties. Additionally, microplastics have been shown to interact with a wide array of contaminants, including pesticides, persistent organic pollutants, heavy metals, and antibiotics, and may act as a vector for contaminant transfer in terrestrial environments. Microplastics and their associated chemicals can be transferred through food webs and may accumulate across multiple trophic levels, resulting in potential detrimental health effects for humans and other organisms. Although several studies have focused on the occurrence and impacts of microplastic contamination in marine environments, their sources, fate, transport, and effects in terrestrial environments are less studied and not well understood. Therefore, further research focusing on the fate, transport, and impacts of microplastics in relation to soil properties, polymer composition and forms, and land-use types is needed. The development of standardized and harmonized methods for analyzing microplastics in soil-plant ecosystems is essential. Future work should also consider the many interactions of microplastics with soil quality and ecotoxicological impacts on biota in the context of global environmental change.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
8.
Environ Res ; 207: 112179, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624271

RESUMO

The accumulation of microplastics (MPs) and nanoplastics (NPs) in terrestrial and aquatic ecosystems has raised concerns because of their adverse effects on ecosystem functions and human health. Plastic waste management has become a universal problem in recent years. Hence, sustainable plastic waste management techniques are vital for achieving the United Nations Sustainable Development Goals. Although many reviews have focused on the occurrence and impact of micro- and nanoplastics (MNPs), there has been limited focus on the management of MNPs. This review first summarizes the ecotoxicological impacts of plastic waste sources and issues related to the sustainable management of MNPs in the environment. This paper then critically evaluates possible approaches for incorporating plastics into the circular economy in order to cope with the problem of plastics. Pollution associated with MNPs can be tackled through source reduction, incorporation of plastics into the circular economy, and suitable waste management. Appropriate infrastructure development, waste valorization, and economically sound plastic waste management techniques and viable alternatives are essential for reducing MNPs in the environment. Policymakers must pay more attention to this critical issue and implement appropriate environmental regulations to achieve environmental sustainability.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Poluição Ambiental , Humanos , Plásticos , Poluentes Químicos da Água/análise
9.
Environ Res ; 204(Pt A): 111924, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34487695

RESUMO

This study assessed the ability of phosphorus (P) fertilizer to remediate the rhizosphere of three wild plant species (Banksia seminuda, a tree; Chloris truncata, a grass; and Hakea prostrata, a shrub) growing in a soil contaminated with total (aliphatic) petroleum hydrocarbon (TPH). Plant growth, photosynthesis (via chlorophyll fluorescence), soil microbial activity, alkane hydroxylase AlkB (aliphatic hydrocarbon-degrading) gene abundance, and TPH removal were evaluated 120 days after planting. Overall, although TPH served as an additional carbon source for soil microorganisms, the presence of TPH in soil resulted in decreased plant growth and photosynthesis. However, growth, photosynthesis, microbial activities, and AlkB gene abundance were enhanced by the application of P fertilizer, thereby increasing TPH removal rates, although the extent and optimum P dosage varied among the plant species. The highest TPH removal (64.66%) was observed in soil planted with the Poaceae species, C. truncata, and amended with 100 mg P kg-1 soil, while H. prostrata showed higher TPH removal compared to the plant belonging to the same Proteaceae family, B. seminuda. The presence of plants resulted in higher AlkB gene abundance and TPH removal relative to the unplanted control. The removal of TPH was associated directly with AlkB gene abundance (R2 > 0.9, p < 0.001), which was affected by plant identity and P levels. The results indicated that an integrated approach involving wild plant species and optimum P amendment, which was determined through experimentation using different plant species, was an efficient way to remediate soil contaminated with TPH.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , Hidrocarbonetos , Fósforo , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
10.
Environ Res ; 214(Pt 4): 114072, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987372

RESUMO

Radioactive elements released into the environment by accidental discharge constitute serious health hazards to humans and other organisms. In this study, three gasified biochars prepared from feedstock mixtures of wood, chicken manure, and food waste, and a KOH-activated biochar (40% food waste + 60% wood biochar (WFWK)) were used to remove cesium (Cs+) and strontium (Sr2+) ions from water. The physicochemical properties of the biochars before and after adsorbing Cs+ and Sr2+ were determined using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, extended X-Ray absorption fine structure (EXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The WFWK exhibited the highest adsorption capacity for Cs+ (62.7 mg/g) and Sr2+ (43.0 mg/g) among the biochars tested herein. The removal of radioactive 137Cs and 90Sr exceeded 80% and 47%, respectively, in the presence of competing ions like Na+ and Ca2+. The functional groups present in biochar, including -OH, -NH2, and -COOH, facilitated the adsorption of Cs+ and Sr2+. The Cs K-edge EXAFS spectra revealed that a single coordination shell was assigned to the Cs-O bonding at 3.11 Å, corresponding to an outer-sphere complex formed between Cs and the biochar. The designer biochar WFWK may be used as an effective adsorbent to treat radioactive 137Cs- and 90Sr-contaminated water generated during the operation of nuclear power plants and/or unintentional release, owing to the enrichment effect of the functional groups in biochar via alkaline activation.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Adsorção , Césio/química , Carvão Vegetal , Alimentos , Humanos , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio , Água , Poluentes Químicos da Água/análise
11.
Environ Res ; 197: 111091, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794177

RESUMO

This review summarizes the adsorptive removal of Fluoroquinolones (FQ) from water and wastewater. The influence of different physicochemical parameters on the adsorptive removal of FQ-based compounds is detailed. Further, the mechanisms involved in the adsorption of FQ-based antibiotics on various adsorbents are succinctly described. As the first of its kind, this paper emphasizes the performance of each adsorbent for FQ-type antibiotic removal based on partition coefficients of the adsorbents that is a more sensitive parameter than adsorption capacity for comparing the performances of adsorbents under various adsorbate concentrations and heterogeneous environmental conditions. It was found that π-π electron donor-acceptor interactions, electrostatic interactions, and pore-filling were the most prominent mechanisms for FQ adsorption by carbon and clay-based adsorbents. Among all the categories of adsorbents reviewed, graphene showed the highest performance for the removal of FQ antibiotics from water and wastewater. Based on the current state of knowledge, this review fills the gap through methodolically understanding the mechanism for further improvement of FQ antibiotics adsorption performance from water and wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbono , Fluoroquinolonas , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
12.
J Environ Manage ; 278(Pt 2): 111586, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33171377

RESUMO

Ethidium bromide (EtBr)-containing wastewater can be hazardous to biodiversity when released into the soil and water bodies without treatment. EtBr can mutate living microbial cells and pose toxicity to even higher organisms. This work investigated the removal of EtBr from aqueous solutions by a naturally occurring palygorskite (PFl-1) clay mineral via systematic batch adsorption experiments under different physicochemical conditions. EtBr existed in an undissociated form at pH ~7, and was adsorbed on PFl-1 obeying the Freundlich isotherm model. The maximum EtBr adsorption capacity was 285 mmol/kg. The best fitted kinetic model for EtBr adsorption was the pseudo-second order model. The amounts of exchangeable cations desorbed from PFl-1 during EtBr adsorption was linearly correlated to the amounts of EtBr adsorbed, with a slope of 0.97, implying that a cation exchange-based adsorption mechanism was dominating. Additionally, dimerization of EtBr molecules via bromide release assisted an increased EtBr removal by PFl-1 at high adsorbate concentrations. Detailed x-ray diffraction, Fourier transform infrared, scanning electron imaging and energy dispersive x-ray analyses confirmed that EtBr adsorption occurred dominantly on the surface of palygorskite which mineralogically constituted 80% of the bulk PFl-1 adsorbent. A small portion of EtBr was also adsorbed by PFl-1 through intercalation onto the smectite impurity (10%) in PFl-1. This study suggested that PFl-1 could be an excellent natural material for removing EtBr from pharmaceutical and laboratory wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Etídio , Concentração de Íons de Hidrogênio , Cinética , Compostos de Magnésio , Compostos de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
13.
J Environ Manage ; 280: 111736, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33298389

RESUMO

Soil salinity is one of the major and widespread challenges in the recent era that hinders global food security and environmental sustainability. Worsening the situation, the harmful impacts of climate change accelerate the development of soil salinity, potentially spreading the problem in the near future to currently unaffected regions. This paper aims to synthesise information from published literature about the extent, development mechanisms, and current mitigation strategies for tackling soil salinity, highlighting the opportunities and challenges under climate change situations. Mitigation approaches such as application of amendments, cultivation of tolerant genotypes, suitable irrigation, drainage and land use strategies, conservation agriculture, phytoremediation, and bioremediation techniques have successfully tackled the soil salinity issue, and offered associated benefits of soil carbon sequestration, and conservation and recycling of natural resources. These management practices further improve the socio-economic conditions of the rural farming community in salt-affected areas. We also discuss emerging reclamation strategies such as saline aquaculture integrated with sub surface drainage, tolerant microorganisms integrated with tolerant plant genotypes, integrated agro-farming systems that warrant future research attention to restore the agricultural sustainability and global food security under climate change scenarios.


Assuntos
Mudança Climática , Solo , Agricultura , Conservação dos Recursos Naturais , Segurança Alimentar , Abastecimento de Alimentos , Salinidade
14.
Environ Geochem Health ; 43(9): 3273-3286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32844339

RESUMO

The staggering production of rock dusts and quarry by-products of mining activities poses an immense environmental burden that warrants research for value-added recycling of these rock mineral powders (RMP). In this study, an incubation experiment was conducted to determine potassium (K) and micronutrients (Zn, Cu, Fe and Mn) release from a quarry RMP to support plant nutrition. Four different size fractions of the RMP were incubated with organic amendments (cow dung and legume straw) under controlled conditions for 90 days. Samples were collected at different intervals (7, 15, 30, 45, 60 and 90 days) for the analysis of available K and micronutrients in the mineral-OM mixtures and leachates. There was a significant (p <0.05) increase in pH of leachates from the mineral-OM mixtures. The K release was significantly higher from the finer size fraction of RMP. About 18.7% Zn added as RMP was released during the incubation period. Zn release increased from 4.7 to 23.2% as the particle size of RMP decreased. Similarly, Cu release from RMP increased from 2.9 to 21.6%, with a decrease in the particle size. Fe and Mn recovery from RMP recorded 11.2 and 6.6%, respectively. Combined application of OM and RMP showed significantly higher nutrient release than other treatments. This study indicates that effective blending of RMP with organic amendments could be a potential source of K and micronutrients in agriculture without posing a risk of toxic element contamination to the soil.


Assuntos
Poluentes do Solo , Micronutrientes/análise , Minerais , Potássio , Pós , Solo , Poluentes do Solo/análise
15.
Environ Geochem Health ; 43(1): 127-138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32761412

RESUMO

Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K2S2O8) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K2S2O8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.


Assuntos
Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Substâncias Húmicas , Oligoelementos/química , Adsorção , Substâncias Húmicas/análise , Modelos Teóricos , Compostos de Potássio/química , Solo/química , Sulfatos/química
16.
Glob Chang Biol ; 26(6): 3658-3676, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314496

RESUMO

Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m2 ) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.4%, SE) of the important C4 cereal Sorghum bicolor under controlled environmental conditions, without accumulation of potentially toxic trace elements in the seeds. Yield increases resulted from the basalt treatment after 120 days without P- and K-fertilizer addition. Shoot silicon concentrations also increased significantly (26 ± 5.4%, SE), with potential benefits for crop resistance to biotic and abiotic stress. Elemental budgets indicate substantial release of base cations important for inorganic carbon removal and their accumulation mainly in the soil exchangeable pools. Geochemical reactive transport modelling, constrained by elemental budgets, indicated CO2 sequestration rates of 2-4 t CO2 /ha, 1-5 years after a single application of basaltic rock dust, including via newly formed soil carbonate minerals whose long-term fate requires assessment through field trials. This represents an approximately fourfold increase in carbon capture compared to control plant-soil systems without basalt. Our results build support for ERW deployment as a CDR technique compatible with spreading basalt powder on acidic loamy soils common across millions of hectares of western European and North American agriculture.


Assuntos
Solo , Sorghum , Agricultura , Dióxido de Carbono , Poeira , Grão Comestível , Silicatos
17.
Environ Res ; 188: 109887, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846653

RESUMO

Biochar has been recognized as a sustainable platform for developing functional materials including catalysts. This work demonstrated a method of converting biochar to sulfonated solid-acid catalysts, and the effectiveness of the catalysts for spiramycin hydrolysis was examined. Two biochar samples (H and X) were sulfonated with three reagents (concentrated H2SO4, ClSO3H and p-toluenesulfonic acid (TsOH)) under hydrothermal, simple heating, ambient temperature, and CHCl3-assisted treatments. The effect of elemental compositions and structural characteristics of the feeding materials (H and X) on the acidic properties of the sulfonated biochars were investigated. The results showed that the sulfonation ability of the three reagents was in the order of ClSO3H > H2SO4 > TsOH, while hydrothermal treatment provided the highest total acidity, and largest amount of acidic groups (e.g., SO3H, COOH and Ar-OH). Biochar X with higher O/C and N contents, and less graphitic features showed superior acidic properties than biochar H under all the employed treatments. The hydrolytic efficiencies of the sulfonated biochars under 200 W of microwave irradiation increased with increasing total acidity, and the amount of SO3H and COOH groups. After sulfonation, the O/C of biochars increased, while H/C decreased, and the aromatic and graphitic features did not change. The electromagnetic energy absorbed by the sulfonated biochars did not notably contribute to spiramycin hydrolysis. Thus, this work demonstrated an effective and promising method for maneuvering biochar-based functional solid-acid catalysts for antibiotic remediation in contaminated water.


Assuntos
Espiramicina , Catálise , Carvão Vegetal , Hidrólise
18.
Ecotoxicol Environ Saf ; 197: 110601, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302858

RESUMO

Consumption of rice and rice products can be a significant exposure pathway to inorganic arsenic (iAs), which is a group 1 carcinogen to humans. The UK follows the current European Commission regulations so that iAs concentrations must be < 0.20 mg kg-1 in white (polished) rice and <0.25 mg kg-1 in brown (unpolished) rice. However, iAs concentration in rice used for infant food production or direct consumption has been set at a maximum of 0.1 mg kg-1. In this context, this study aimed to evaluate iAs concentrations in different types of rice sold in the UK and to quantify the health risks to the UK population. Here, we evaluated 55 different types of rice purchased from a range of retail outlets. First, we analysed all rice types for total As (tAs) concentration from which 42 rice samples with tAs > 0.1 mg kg-1 were selected for As speciation using HPLC-ICP-MS. Based on the average concentration of iAs of our samples, we calculated values for the Lifetime Cancer Risk (LCR), Target Hazard Quotient (THQ) and Margin of Exposure (MoE). We found a statistically significant difference between organically and non-organically grown rice. We also found that brown rice contained a significantly higher concentration of iAs compared to white or wild rice. Notably, 28 rice samples exceeded the iAs maximum limit stipulated by the EU (0.1 mg kg-1) with an average iAs concentration of 0.13 mg kg-1; therefore consumption of these rice types could be riskier for infants than adults. Based on the MoE, it was found that infants up to 1 year must be restricted to a maximum of 20 g per day for the 28 rice types to avoid carcinogenic risks. We believe that consumers could be better informed whether the marketed product is fit for infants and young children, via appropriate product labelling containing information about iAs concentration.


Assuntos
Arsênio/análise , Carcinógenos/análise , Contaminação de Alimentos/análise , Oryza/química , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Medição de Risco , Reino Unido
19.
J Environ Manage ; 261: 110246, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148312

RESUMO

Reclamation of degraded soils such as those with low organic carbon content and soils co-contaminated with toxic elements and phthalic acid esters (PAEs) is of great concern. Little is known about the efficiency of plant- and animal-derived biochars for improving plant growth and physicochemical and biological properties of co-contaminated soils, particularly under low content of organic matter. Hence, a pot trial was carried out by growing pak choi (Brassica chinensis L.) to assess the influence of different doses (0, 0.5, 1, 2, and 4%) of animal (pig carcass) and wood (Platanus orientalis) derived biochars on soil properties, nutrient availabilities, plant growth, and soil enzyme activities in two soils containing low (LOC) and high (HOC) organic carbon contents and co-contaminated with di-(2-ethylhexyl) phthalic acid (DEHP) and cadmium (Cd). Biochar applications improved pH, salinity, carbon content, and cation exchange capacity of both soils. Addition of biochars significantly increased the bioavailability and uptake of phosphorus and potassium in the plants in both soils with greater effects from pig biochar than wood biochar. Biochar additions also significantly enhanced urease, sucrase, and catalase activities, but suppressed acid phosphatase activity in both soils. The impact of pig biochar was stronger on urease and acid phosphatase, while the wood biochar was more effective with sucrase and catalase activities. The biomass yield of pak choi was significantly increased after biochar addition to both soils, especially in 2% pig biochar treatment in the LOC soil. The positive response of soil enzymes activities and plant growth for biochar addition to the Cd and DEHP co-contaminated soils indicate that both biochars, particularly the pig biochar can mitigate the risk of these pollutants and prove to be eco-friendly and low-cost amendments for reclaiming these degraded soils.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Carvão Vegetal , Metais , Ácidos Ftálicos , Suínos , Madeira
20.
Ecotoxicol Environ Saf ; 170: 156-165, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529614

RESUMO

Toxic trace element (TTE) contamination in urban soils may pose potential health risks, especially in cities with previous industrial activities. This study aimed to investigate soil contamination in urban allotments in Sheffield, the uptake of TTEs in autumn and spring sown onions (Allium cepa), and their potential risks on human health via consumption of the crops. Paired soil and plant samples were taken in triplicates from four private allotments to assess potentially elevated levels of lead (Pb), zinc (Zn), copper (Cu), arsenic (As), and chromium (Cr). These elements in soils exceeded the ambient background levels for England. Both Pb and As exceeded some UK and EU soil tolerable limits. Concentration factors (CF) were calculated as the ratio of trace element in the plant as compared to that in the soil, and uptake rates were in the order Zn>Cu>Cr>Pb>As. Concentrations were higher for most TTEs in spring sown onions (SSO), and had significantly higher CF (p < 0.05) for Pb and Cr than autumn sown onions (ASO), whereas the opposite was true for As. Toxic elements in plants did not exceed FAO/WHO intake limits when considering TTE content per plant and consumption rates. Human health risk assessment calculations using target hazard quotients (THQ) and hazard indexes (HI) indicated that consuming onions alone did not pose an immediate health risk.


Assuntos
Metais Pesados/análise , Cebolas/metabolismo , Poluentes do Solo/análise , Solo/química , Arsênio/análise , Cromo/análise , Cidades , Cobre/análise , Produtos Agrícolas/metabolismo , Inglaterra , Feminino , Humanos , Chumbo/análise , Masculino , Medição de Risco , Estações do Ano , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa