Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654540

RESUMO

Entamoeba histolytica causes invasive amoebiasis, an important neglected tropical disease with a significant global health impact. The pathogenicity and survival of E. histolytica and its reptilian equivalent, Entamoeba invadens, relies on its ability to exhibit efficient motility, evade host immune responses, and exploit host resources, all of which are governed by the actin cytoskeleton remodeling. Our study demonstrates the early origin and the regulatory role of TALE homeobox protein EiHbox1 in actin-related cellular processes. Several genes involved in different biological pathways, including actin dynamics are differentially expressed in EiHbox1 silenced cells. EiHbox1 silenced parasites showed disrupted F-actin organization and loss of cellular polarity. EiHbox1's presence in the anterior region of migrating cells further suggests its involvement in maintaining cellular polarity. Loss of polarized morphology of EiHbox1 silenced parasites leads to altered motility from fast, directionally persistent, and highly chemotactic to slow, random, and less chemotactic, which subsequently leads to defective aggregation during encystation. EiHbox1 knockdown also resulted in a significant reduction in phagocytic capacity and poor capping response. These findings highlight the importance of EiHbox1 of E. invadens in governing cellular processes crucial for their survival, pathogenicity, and evasion of the host immune system.

2.
Mol Microbiol ; 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424153

RESUMO

It is interesting to identify factors involved in the regulation of the encystation of Entamoeba histolytica that differentiate trophozoites into cysts. Evolutionarily conserved three amino acid loop extension (TALE) homeodomain proteins act as transcription factors and execute a variety of functions that are essential for life. A TALE homeodomain (EhHbox) protein-encoding gene has been identified in E. histolytica (Eh) that is highly upregulated during heat shock, glucose, and serum starvation. Its ortholog, EiHbox1, a putative homeobox protein in E. invadens (Ei), is also highly upregulated during the early hours of encystation, glucose starvation, and heat shock. They belong to the PBX family of TALE homeobox proteins and have conserved residues in the homeodomain that are essential for DNA binding. Both are localized in the nucleus during encystation and under different stress conditions. The electrophoretic mobility shift assay confirmed that the recombinant GST-EhHbox binds to the reported TGACAG and TGATTGAT motifs. Down-regulation of EiHbox1 by gene silencing reduced Chitin synthase, Jacob, and increased Jessie gene expression, resulting in defective cysts and decreased encystation efficiency and viability. Overall, our results suggest that the TALE homeobox family has been conserved during evolution and acts as a transcription factor to control the differentiation of Entamoeba by regulating the key encystation-induced genes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa