Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proteomics ; 24(16): e2400025, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38895962

RESUMO

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.


Assuntos
Cromatografia em Gel , Vesículas Extracelulares , Proteômica , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografia em Gel/métodos , Proteômica/métodos , Biomarcadores/sangue
2.
Diabetes Metab Res Rev ; 40(1): e3716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649398

RESUMO

Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Pâncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo
3.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383396

RESUMO

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Assuntos
Ácidos Graxos Ômega-3 , Ilhotas Pancreáticas , N-Glicosil Hidrolases , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Fosfatidilcolinas/metabolismo
4.
Clin Proteomics ; 20(1): 38, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735622

RESUMO

BACKGROUND: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic ß cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. METHODS: This systematic review was registered with Open Science Framework ( https://doi.org/10.17605/OSF.IO/N8TSA ). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. RESULTS: A total of 13 studies met our inclusion criteria, resulting in the identification of 266 unique proteins, with 31 (11.6%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found 2 subsets: 17 proteins (C3, C1R, C8G, C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, APOE, TETN, C1S, C6A3, SAA4, ALS, SEPP1 and PI16) and 3 proteins (C3, CLUS and C4A) have consistent regulation in at least 2 independent studies at post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. CONCLUSIONS: Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.

5.
Cell Commun Signal ; 21(1): 241, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723562

RESUMO

BACKGROUND: Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). METHODS: We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We also performed immobilized-metal affinity chromatography to enrich for phosphopeptides, which allowed us to obtain multi-PTM information from the same samples. RESULTS: By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. CONCLUSIONS: Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro. Video Abstract.


Assuntos
Lipopolissacarídeos , Proteoma , Lipopolissacarídeos/farmacologia , Processamento de Proteína Pós-Traducional , Fosforilação , Macrófagos
6.
Toxicol Appl Pharmacol ; 436: 115863, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998857

RESUMO

Solid tumors are commonly treated with cisplatin, which can cause off-target side effects in cancer patients. Chronotherapy is a potential strategy to reduce drug toxicity. To determine the effectiveness of timed-cisplatin treatment in mammals, we compared two conditions: clock disrupted jet-lag and control conditions. Under normal and disrupted clock conditions, triple-negative mammary carcinoma cells were injected subcutaneously into eight-week-old NOD.Cg-Prkdcscid/J female mice. Tumor volumes and body weights were measured in these mice before and after treatment with cisplatin. We observed an increase in tumor volumes in mice housed under disrupted clock compared to the normal clock conditions. After treatment with cisplatin, we observed a reduced tumor growth rate in mice treated at ZT10 compared to ZT22 and untreated cohorts under normal clock conditions. However, these changes were not seen with the jet-lag protocol. We also observed greater body weight loss in mice treated with ZT10 compared to ZT22 or untreated mice in the jet-lag protocol. Our observations suggest that the effectiveness of cisplatin in mammary carcinoma treatment is time-dependent in the presence of the circadian clock.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cronoterapia/efeitos adversos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD
7.
Yale J Biol Med ; 92(2): 305-316, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249491

RESUMO

The circadian rhythm is established by a coordinated network of peripheral clocks interlocked and regulated by a central pacemaker. This network is maintained by the rhythmic expression of core clock genes, which in turn generate oscillatory expression patterns of different sets of target proteins in a tissue-specific manner. Precise regulation of biological processes driven by the body's circadian network in response to periodic changes in the environment determines healthy life. The delicate balance in the cycling of enzymes, metabolites, cofactors, and immune regulators is essential to achieve cellular homeostasis. Disruption of this circadian homeostasis has been linked with the development and progression of various diseases including cancer. Over the years, circadian regulation of drug metabolism and processing has been employed in the treatment of diabetes, hypertension, peptic ulcers, and allergic rhinitis. Although time dictated drug administration was demonstrated many decades ago, its application in cancer treatment is limited due to insufficient mechanistic data supporting experimental results and inconsistency between clinical trials. However, timed administration of anti-cancer drugs is rapidly gaining attention as studies with animal and human models unveil molecular intricacies involved in the circadian control of biological pathways. In this regard, striking a balance between maximizing tumor responsiveness and minimizing side effects is crucial to achieve positive patient outcomes. This review focuses on regulation of the circadian clock in carcinogenesis outcomes through DNA damage and repair mechanisms and its application in therapy with specific emphasis on skin and breast cancers.


Assuntos
Carcinogênese/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Dano ao DNA , Reparo do DNA , Neoplasias/genética , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Resultado do Tratamento
8.
Colloids Surf B Biointerfaces ; 237: 113839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492411

RESUMO

Herein, we have employed a supramolecular assembly of a cationic dye, LDS-698 and a common surfactant sodium dodecyl sulfate (SDS) as a turn-on fluorescent sensor for protamine (Pr) detection. Addition of cationic Pr to the solution of dye-surfactant complex brings negatively charged SDS molecules together through strong electrostatic interaction, assisting aggregation of SDS way before its critical micellar concentration (CMC). These aggregates encapsulate the dye molecules within their hydrophobic region, arresting non-radiative decay channels of the excited dye. Thus, the LDS-698•SDS assembly displays substantial enhancement in fluorescence intensity that follows a nice linear trend with Pr concentration, providing limit of detection (LOD) for Pr as low as 3.84(±0.11) nM in buffer, 124.4(±6.7) nM in 1% human serum and 28.3(±0.5) nM in 100% human urine. Furthermore, high selectivity, low background signal, large stokes shift, and emission in the biologically favorable deep-red region make the studied assembly a promising platform for Pr sensing. As of our knowledge it is the first ever Pr sensory platform, using a very common surfactant (SDS), which is economically affordable and very easily available in the market. This innovative approach can replace the expensive, exotic and specialized chemicals considered for the purpose and thus showcase its potential in practical applications.


Assuntos
Surfactantes Pulmonares , Tensoativos , Humanos , Tensoativos/química , Antídotos , Heparina , Dodecilsulfato de Sódio/química , Cátions/química
9.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352306

RESUMO

Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin producing ß cells of the pancreas. Omega-3 fatty acids protect ß cells and reduce the incident of T1D. However, how omega-3 fatty acids act on ß cells is not well understood. We have shown that omega-3 fatty acids reduce pro-inflammatory cytokine-mediated ß-cell apoptosis by upregulating the expression of the ADP-ribosylhydrolase ARH3. Here, we further investigate the ß-cell protection mechanism by ARH3 by performing siRNA of its gene Adprhl2 in MIN6 insulin-producing cells followed by treatment with a cocktail of the pro-inflammatory cytokines IL-1ß + IFN-γ + TNF-α, and proteomics analysis. ARH3 regulated proteins from several pathways related to the nucleus (splicing, RNA surveillance and nucleocytoplasmic transport), mitochondria (metabolic pathways) and endoplasmic reticulum (protein folding). ARH3 also regulated the levels of cytokine-signaling proteins related to the antigen processing and presentation, and chemokine-signaling pathway. We further studied the role of ARH in regulating the chemokine CXCL9. We confirmed that ARH3 reduces the cytokine-induced expression of CXCL9 by ELISA. We also found that CXCL9 expression is regulated by omega-3 fatty acids. In conclusion, we showed that omega-3 fatty acids regulate CXCL9 expression via ARH3, which might have a role in protecting ß cells from immune attack and preventing T1D development.

10.
bioRxiv ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38293231

RESUMO

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 minutes. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals that underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV-proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.

11.
Trends Mol Med ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39152082

RESUMO

Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.

12.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895427

RESUMO

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing ß cells renders these cells susceptible to autoimmunity. We show that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reverses the mRNA translation block in stressed human islets and delays the onset of diabetes, reduces islet inflammation, and preserves ß cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice shows reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice shows an increase in the immune checkpoint protein PD-L1 in ß cells. Golgi membrane protein 1, whose levels increase following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacts with and stabilizes PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

13.
J Clin Invest ; 134(16)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889047

RESUMO

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eukaryotic translation initiation factor-2α (eIF2α). In T1D, maladaptive unfolded protein response (UPR) in insulin-producing ß cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PKR-like ER kinase (PERK), a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved ß cell mass in T1D-susceptible mice. Single-cell RNA-Seq of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen-processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein programmed death-ligand 1 (PD-L1) in ß cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity and that inhibition of PERK may offer a strategy for preventing or delaying the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , eIF-2 Quinase , Animais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/enzimologia , Camundongos , Humanos , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos NOD , Resposta a Proteínas não Dobradas , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética
14.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398265

RESUMO

Background. Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). Methods. We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We integrated this method into a mass spectrometry-based multi-PTM pipeline to simultaneously analyze carbamylated and acetylated peptides in addition to phosphopeptides were enriched by sequential immobilized-metal affinity chromatography. Results. By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. Conclusions Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro .

15.
Expert Opin Ther Targets ; 27(9): 793-806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706269

RESUMO

INTRODUCTION: Type 1 diabetes (T1D) is an autoimmune disease in which pro-inflammatory and cytotoxic signaling drive the death of the insulin-producing ß cells. This complex signaling is regulated in part by fatty acids and their bioproducts, making them excellent therapeutic targets. AREAS COVERED: We provide an overview of the fatty acid actions on ß cells by discussing how they can cause lipotoxicity or regulate inflammatory response during insulitis. We also discuss how diet can affect the availability of fatty acids and disease development. Finally, we discuss development avenues that need further exploration. EXPERT OPINION: Fatty acids, such as hydroxyl fatty acids, ω-3 fatty acids, and their downstream products, are druggable candidates that promote protective signaling. Inhibitors and antagonists of enzymes and receptors of arachidonic acid and free fatty acids, along with their derived metabolites, which cause pro-inflammatory and cytotoxic responses, have the potential to be developed as therapeutic targets also. Further, because diet is the main source of fatty acid intake in humans, balancing protective and pro-inflammatory/cytotoxic fatty acid levels through dietary therapy may have beneficial effects, delaying T1D progression. Therefore, therapeutic interventions targeting fatty acid signaling hold potential as avenues to treat T1D.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Ácidos Graxos Ômega-3 , Humanos , Ácidos Graxos/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Transdução de Sinais , Dieta , Ácidos Graxos Ômega-3/uso terapêutico
16.
medRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865103

RESUMO

Aims: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic ß cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. Methods: This systematic review was registered with Open Science Framework (DOI 10.17605/OSF.IO/N8TSA). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. Results: A total of 13 studies met our inclusion criteria, resulting in the identification of 251 unique proteins, with 27 (11%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found a subset of 3 proteins (C3, KNG1 & CFAH), 6 proteins (C3, C4A, APOA4, C4B, A2AP & BTD) and 7 proteins (C3, CLUS, APOA4, C6, A2AP, C1R & CFAI) have consistent regulation between multiple studies in samples from individuals at pre-seroconversion, post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. Conclusions: Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.

17.
Sci Data ; 10(1): 837, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017024

RESUMO

Extracellular vesicles play major roles in cell-to-cell communication and are excellent biomarker candidates. However, studying plasma extracellular vesicles is challenging due to contaminants. Here, we performed a proteomics meta-analysis of public data to refine the plasma EV composition by separating EV proteins and contaminants into different clusters. We obtained two clusters with a total of 1717 proteins that were depleted of known contaminants and enriched in EV markers with independently validated 71% true-positive. These clusters had 133 clusters of differentiation (CD) antigens and were enriched with proteins from cell-to-cell communication and signaling. We compared our data with the proteins deposited in PeptideAtlas, making our refined EV protein list a resource for mechanistic and biomarker studies. As a use case example for this resource, we validated the type 1 diabetes biomarker proplatelet basic protein in EVs and showed that it regulates apoptosis of ß cells and macrophages, two key players in the disease development. Our approach provides a refinement of the EV composition and a resource for the scientific community.


Assuntos
Vesículas Extracelulares , Proteômica , Antígenos CD/metabolismo , Biomarcadores , Vesículas Extracelulares/metabolismo , Proteínas , Transdução de Sinais , Conjuntos de Dados como Assunto , Humanos , Animais
18.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076918

RESUMO

Aim/hypothesis: Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development. Here, we investigate the GDF15 signaling in pancreatic islets towards opening possibilities for therapeutic targeting in ß cells and to understand why this protection fails to occur naturally. Methods: GDF15 signaling in islets was determined by proximity-ligation assay, untargeted proteomics, pathway analysis, and treatment of cells with specific inhibitors. To determine if GDF15 levels would increase prior to disease onset, plasma levels of GDF15 were measured in a longitudinal prospective study of children during T1D development (n=132 cases vs. n=40 controls) and in children with islet autoimmunity but normoglycemia (n=47 cases vs. n=40 controls) using targeted mass spectrometry. We also investigated the regulation of GDF15 production in islets by fluorescence microscopy and western blot analysis. Results: The proximity-ligation assay identified ERBB2 as the GDF15 receptor in islets, which was confirmed using its specific antagonist, tucatinib. The untargeted proteomics analysis and caspase assay showed that ERBB2 activation by GDF15 reduces ß cell apoptosis by downregulating caspase 8. In plasma, GDF15 levels were higher (p=0.0024) during T1D development compared to controls, but not in islet autoimmunity with normoglycemia. However, in the pancreatic islets GDF15 was depleted via sequestration of its mRNA into stress granules, resulting in translation halting. Conclusions/interpretation: GDF15 protects against T1D via ERBB2-mediated decrease of caspase 8 expression in pancreatic islets. Circulating levels of GDF15 increases pre-T1D onset, which is insufficient to promote protection due to its localized depletion in the islets. These findings open opportunities for targeting GDF15 downstream signaling for pancreatic ß cell protection in T1D and help to explain the lack of natural protection by the endogenous protein.

19.
Cell Rep Med ; 4(11): 101261, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918404

RESUMO

In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing ß cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with ß cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during ß cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve ß cell function in T1D through islet cell-autonomous effects.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Putrescina/metabolismo
20.
Expert Opin Ther Targets ; 26(1): 57-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35138971

RESUMO

INTRODUCTION: Current treatment for type 1 diabetes (T1D) is centered around insulin supplementation to manage the effects of pancreatic ß cell loss. GDF15 is a potential preventative therapy against T1D progression that could work to curb increasing disease incidence. AREAS COVERED: This paper discusses the known actions of GDF15, a pleiotropic protein with metabolic, feeding, and immunomodulatory effects, connecting them to highlight the open opportunities for future research. The role of GDF15 in the prevention of insulitis and protection of pancreatic ß cells against pro-inflammatory cytokine-mediated cellular stress are examined and the pharmacological promise of GDF15 and critical areas of future research are discussed. EXPERT OPINION: GDF15 shows promise as a potential intervention but requires further development. Preclinical studies have shown poor efficacy, but this result may be confounded by the measurement of gross GDF15 instead of the active form. Additionally, the effect of GDF15 in the induction of anorexia and nausea-like behavior and short-half-life present significant challenges to its deployment, but a systems pharmacology approach paired with chronotherapy may provide a possible solution to therapy for this currently unpreventable disease.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa