RESUMO
Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Doença de Parkinson/metabolismo , Corpos de Processamento , Estabilidade de RNA , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT) cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell type-specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.
Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Neuroglia , Neurônios , Tauopatias , Proteínas tau , Animais , Neuroglia/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Transdução de Sinais , Drosophila melanogaster/genética , Técnicas de Introdução de Genes , Drosophila/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Animais Geneticamente Modificados , Edição de Genes , Sistemas CRISPR-CasRESUMO
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila , Complexo I de Transporte de Elétrons , Complexo I de Transporte de Elétrons/deficiência , Mitocôndrias , Doenças Mitocondriais , Proteostase , Animais , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Autofagia/genética , Estresse Oxidativo/genética , Drosophila melanogaster/genética , Mutação , Lisossomos/metabolismo , Lisossomos/genética , Drosophila/genética , Drosophila/metabolismo , Transdução de SinaisRESUMO
Vesicular trafficking defects, particularly those in the autophagolysosomal system, have been strongly implicated in the pathogenesis of Parkinson's disease and related α-synucleinopathies. However, mechanisms mediating dysfunction of membrane trafficking remain incompletely understood. Using a Drosophila model of α-synuclein neurotoxicity with widespread and robust pathology, we find that human α-synuclein expression impairs autophagic flux in aging adult neurons. Genetic destabilization of the actin cytoskeleton rescues F-actin accumulation, promotes autophagosome clearance, normalizes the autophagolysosomal system, and rescues neurotoxicity in α-synuclein transgenic animals through an Arp2/3 dependent mechanism. Similarly, mitophagosomes accumulate in human α-synuclein-expressing neurons, and reversal of excessive actin stabilization promotes both clearance of these abnormal mitochondria-containing organelles and rescue of mitochondrial dysfunction. These results suggest that Arp2/3 dependent actin cytoskeleton stabilization mediates autophagic and mitophagic dysfunction and implicate failure of autophagosome maturation as a pathological mechanism in Parkinson's disease and related α-synucleinopathies.
Assuntos
Actinas/metabolismo , Autofagossomos/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , alfa-Sinucleína/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Envelhecimento , Animais , Animais Geneticamente Modificados , Autofagossomos/genética , Autofagia/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genéticaRESUMO
Neuroinflammation is a critical pathophysiological hallmark of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI). Microglia, the first responders of the brain, are the drivers of this neuroinflammation. Microglial activation, leading to induction of pro-inflammatory factors, like Interleukin 1-ß (IL-1ß), Tumor necrosis factor-α (TNFα), nitrites, and others, have been shown to induce neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of developing PD, but the mechanism underlying the microglial activation is still under active research. Recently, microglial ion channels have come to the forefront as potential drug targets in multiple neurodegenerative disorders, including AD and PD. Microglia expresses a variety of ion channels, including potassium channels, calcium channels, chloride channels, sodium channels, and proton channels. The diversity of channels present on microglia is responsible for the dynamic nature of these immune cells of the brain. These ion channels regulate microglial proliferation, chemotaxis, phagocytosis, antigen recognition and presentation, apoptosis, and cell signaling leading to inflammation, among other critical critical functions. Understanding the role of these ion channels and the signaling mechanism these channels regulate under pathological conditions is an active area of research. This review will be focusing on the roles of different microglial ion channels, and their potential role in regulating microglial functions in neurodegenerative disorders.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Microglia/metabolismo , Inflamação/patologia , Canais Iônicos , Doenças Neurodegenerativas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Doença de Parkinson/patologia , Doença de Alzheimer/patologiaRESUMO
Astrocyte reactivity is disease- and stimulus-dependent, adopting either a proinflammatory A1 phenotype or a protective, anti-inflammatory A2 phenotype. Recently, we demonstrated, using cell culture, animal models and human brain samples, that dopaminergic neurons produce and secrete higher levels of the chemokine-like signaling protein Prokineticin-2 (PK2) as a compensatory protective response against neurotoxic stress. As astrocytes express a high level of PK2 receptors, herein, we systematically characterize the role of PK2 in astrocyte structural and functional properties. PK2 treatment greatly induced astrocyte migration, which was accompanied by a shift in mitochondrial energy metabolism, a reduction in proinflammatory factors, and an increase in the antioxidant genes Arginase-1 and Nrf2. Overexpression of PK2 in primary astrocytes or in the in vivo mouse brain induced the A2 astrocytic phenotype with upregulation of key protective genes and A2 reactivity markers including Arginase-1 and Nrf2, PTX3, SPHK1, and TM4SF1. A small-molecule PK2 agonist, IS20, not only mimicked the protective effect of PK2 in primary cultures, but also increased glutamate uptake by upregulating GLAST. Notably, IS20 blocked not only MPTP-induced reductions in the A2 phenotypic markers SPHK1 and SCL10a6 but also elevation of the of A1 marker GBP2. Collectively, our results reveal that PK2 regulates a novel neuron-astrocyte signaling mechanism by promoting an alternative A2 protective phenotype in astrocytes, which could be exploited for development of novel therapeutic strategies for PD and other related chronic neurodegenerative diseases. PK2 signals through its receptors on astrocytes and promotes directed chemotaxis. PK2-induced astrocyte reactivity leads to an increase in antioxidant and anti-inflammatory proteins while increasing glutamate uptake, along with decreased inflammatory factors. © 2018 Wiley Periodicals, Inc.
Assuntos
Astrócitos/metabolismo , Quimiotaxia/fisiologia , Hormônios Gastrointestinais/metabolismo , Neuropeptídeos/metabolismo , Animais , Arginase/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Hormônios Gastrointestinais/administração & dosagem , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuropeptídeos/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/administração & dosagem , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologiaRESUMO
Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures. Saracatinib pretreatment dampened SE severity and completely prevented mortality. We further utilized fyn-/- and fyn+/+ mice (wildtype control for the fyn-/- mice on same genetic background), and the rat kainate model, treated with saracatinib post-SE, to validate the role of Fyn/SFK in SE and epileptogenesis. We observed significant reduction in SE severity, epileptiform spikes, and electrographic non-convulsive seizures in fyn-/- mice when compared to fyn+/+ mice. Interestingly, significant reductions in phosphorylated pSrc-416 and PKCδ (pPKCδ-507) and naive PKCδ were observed in fyn-/- mice as compared to fyn+/+ mice suggesting that PKCδ signaling is a downstream mediator of Fyn in SE and epileptogenesis. Notably, fyn-/- mice also showed a reduction in key proinflammatory mediators TNF-α, IL-1ß, and iNOS mRNA expression; serum IL-6 and IL-12 levels; and nitro-oxidative stress markers such as 4-HNE, gp91phox, and 3-NT in the hippocampus. Immunohistochemistry revealed a significant increase in reactive microgliosis and neurodegeneration in the hippocampus and hilus of dentate gyrus in fyn+/+ mice in contrast to fyn-/- mice. Interestingly, we did not observe upregulation of Fyn in pyramidal neurons of the hippocampus during post-SE in fyn+/+ mice, but it was upregulated in hilar neurons of the dentate gyrus when compared to naïve control. In reactive microglia, both Fyn and PKCδ were persistently upregulated during post-SE suggesting that Fyn-PKCδ may drive neuroinflammation during epileptogenesis. Since disabling the Fyn kinase prior to SE, either by treating with saracatinib or fyn gene knockout, suppressed seizures and the subsequent epileptogenic events, we further tested whether Fyn/SFK inhibition during post-SE modifies epileptogenesis. Telemetry-implanted, SE-induced, rats were treated with saracatinib and continuously monitored for a month. At 2h post-diazepam, the saracatinib (25mg/kg) or the vehicle was administered orally and repeated twice daily for first three days followed by a single dose/day for the next four days. The saracatinib post-treatment prevented epileptogenesis in >50% of the rats and significantly reduced spontaneous seizures and epileptiform spikes in the rest (one animal did not respond) when compared to the vehicle treated group, which had >24 seizures in a month. Collectively, the findings suggest that Fyn/SFK is a potential mediator of epileptogenesis and a therapeutic target to prevent/treat seizures and epileptogenesis.
Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Quinazolinas/farmacologia , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estado Epiléptico/etiologia , Estado Epiléptico/fisiopatologiaRESUMO
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10⯵M) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5â¯mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Assuntos
Clorpirifos/toxicidade , Neurônios Dopaminérgicos/metabolismo , Inseticidas/toxicidade , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Fator de Transcrição STAT1/metabolismo , Animais , Linhagem Celular Transformada , Dopamina/metabolismo , Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-characterized inflammogens LPS and TNFα rapidly activated Fyn kinase in microglia. Immunocytochemical studies revealed that activated Fyn preferentially localized to the microglial plasma membrane periphery and the nucleus. Furthermore, activated Fyn phosphorylated PKCδ at tyrosine residue 311, contributing to an inflammogen-induced increase in its kinase activity. Notably, the Fyn-PKCδ signaling axis further activated the LPS- and TNFα-induced MAP kinase phosphorylation and activation of the NFκB pathway, implying that Fyn is a major upstream regulator of proinflammatory signaling. Functional studies in microglia isolated from wild-type (Fyn(+/+)) and Fyn knock-out (Fyn(-/-)) mice revealed that Fyn is required for proinflammatory responses, including cytokine release as well as iNOS activation. Interestingly, a prolonged inflammatory insult induced Fyn transcript and protein expression, indicating that Fyn is upregulated during chronic inflammatory conditions. Importantly, in vivo studies using MPTP, LPS, or 6-OHDA models revealed a greater attenuation of neuroinflammatory responses in Fyn(-/-) and PKCδ (-/-) mice compared with wild-type mice. Collectively, our data demonstrate that Fyn is a major upstream signaling mediator of microglial neuroinflammatory processes in PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is a complex multifactorial disease characterized by the progressive loss of midbrain dopamine neurons. Sustained microglia-mediated neuroinflammation has been recognized as a major pathophysiological contributor to chronic degenerative processes in PD; however, the key molecular signaling mechanisms underlying microglial activation are not entirely clear. Herein, we identified a novel role for the non-receptor tyrosine kinase Fyn in regulating neuroinflammatory responses in microglia. Our data clearly suggest that the Fyn-PKCδ signaling axis acts as a major upstream signaling mediator of the sustained neuroinflammatory processes in cell culture and animal models of PD. Our finding has important clinical significance to PD because it identifies Fyn as a potential translational target for intervention of progressive neurodegenerative processes in PD.
Assuntos
Encefalite/etiologia , Microglia/metabolismo , Doença de Parkinson/complicações , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Fracionamento Celular/métodos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Óxido Nítrico/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Fosforilação , Proteína Quinase C-delta/genética , Proteínas Proto-Oncogênicas c-fyn/genética , Fator de Necrose Tumoral alfa/farmacologia , Tirosina , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
Chronic microglial activation has been linked to the progressive degeneration of the nigrostriatal dopaminergic neurons evidenced in Parkinson's disease (PD) pathogenesis. The exact etiology of PD remains poorly understood. Although both oxidative stress and neuroinflammation are identified as co-contributors in PD pathogenesis, signaling mechanisms underlying neurodegenerative processes have yet to be defined. Indeed, we recently identified that protein kinase C delta (PKCδ) activation is critical for induction of dopaminergic neuronal loss in response to neurotoxic stressors. However, it remains to be defined whether PKCδ activation contributes to immune signaling events driving microglial neurotoxicity. In the present study, we systematically investigated whether PKCδ contributes to the heightened microglial activation response following exposure to major proinflammatory stressors, including α-synuclein, tumor necrosis factor α (TNFα), and lipopolysaccharide (LPS). We report that exposure to the aforementioned inflammatory stressors dramatically upregulated PKCδ with a concomitant increase in its kinase activity and nuclear translocation in both BV-2 microglial cells and primary microglia. Importantly, we also observed a marked upregulation of PKCδ in the microglia of the ventral midbrain region of PD patients when compared to age-matched controls, suggesting a role for microglial PKCδ in neurodegenerative processes. Further, shRNA-mediated knockdown and genetic ablation of PKCδ in primary microglia blunted the microglial proinflammatory response elicited by the inflammogens, including ROS generation, nitric oxide production, and proinflammatory cytokine and chemokine release. Importantly, we found that PKCδ activated NFκB, a key mediator of inflammatory signaling events, after challenge with inflammatory stressors, and that transactivation of NFκB led to translocation of the p65 subunit to the nucleus, IκBα degradation and phosphorylation of p65 at Ser536. Furthermore, both genetic ablation and siRNA-mediated knockdown of PKCδ attenuated NFκB activation, suggesting that PKCδ regulates NFκB activation subsequent to microglial exposure to inflammatory stimuli. To further investigate the pivotal role of PKCδ in microglial activation in vivo, we utilized pre-clinical models of PD. We found that PKCδ deficiency attenuated the proinflammatory response in the mouse substantia nigra, reduced locomotor deficits and recovered mice from sickness behavior in an LPS-induced neuroinflammation model of PD. Likewise, we found that PKCδ knockout mice treated with MPTP displayed a dampened microglial inflammatory response. Moreover, PKCδ knockout mice exhibited reduced susceptibility to the neurotoxin-induced dopaminergic neurodegeneration and associated motor impairments. Taken together, our studies propose a pivotal role for PKCδ in PD pathology, whereby sustained PKCδ activation drives sustained microglial inflammatory responses and concomitant dopaminergic neurotoxicity consequently leading to neurobehavioral deficits. We conclude that inhibiting PKCδ activation may represent a novel therapeutic strategy in PD treatment.
Assuntos
Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Proteína Quinase C-delta/metabolismo , Animais , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Mesencéfalo/citologia , Camundongos Knockout , Microglia/efeitos dos fármacos , Modelos Teóricos , Degeneração Neural/patologia , Doença de Parkinson/patologia , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
BACKGROUND: Significant progress has been made over the past decade in measuring the chemical components of the exposome, providing transformative population-scale frameworks in probing the etiologic link between environmental factors and disease phenotypes. While the analytical technologies continue to evolve with reams of data being generated, there is an opportunity to complement exposome-wide association studies (ExWAS) with functional analyses to advance etiologic search at organismal, cellular, and molecular levels. OBJECTIVES: Exposomics is a transdisciplinary field aimed at enabling discovery-based analysis of the nongenetic factors that contribute to disease, including numerous environmental chemical stressors. While advances in exposure assessment are enhancing population-based discovery of exposome-wide effects and chemical exposure agents, functional screening and elucidation of biological effects of exposures represent the next logical step toward precision environmental health and medicine. In this work, we focus on the use, strategies, and prospects of alternative approaches and model systems to enhance the current human exposomics framework in biomarker search and causal understanding, spanning from bench-based nonmammalian organisms and cell culture to computational new approach methods (NAMs). DISCUSSION: We visit the definition of the functional exposome and exposomics and discuss a need to leverage alternative models as opposed to mammalian animals for delineating exposome-wide health effects. Under the "three Rs" principle of reduction, replacement, and refinement, model systems such as roundworms, fruit flies, zebrafish, and induced pluripotent stem cells (iPSCs) are advantageous over mammals (e.g., rodents or higher vertebrates). These models are cost-effective, and cell-specific genetic manipulations in these models are easier and faster, compared to mammalian models. Meanwhile, in silico NAMs enhance hazard identification and risk assessment in humans by bridging the translational gaps between toxicology data and etiologic inference, as represented by in vitro to in vivo extrapolation (IVIVE) and integrated approaches to testing and assessment (IATA) under the adverse outcome pathway (AOP) framework. Together, these alternatives offer a strong toolbox to support functional exposomics to study toxicity and causal mediators underpinning exposure-disease links. https://doi.org/10.1289/EHP13120.
Assuntos
Exposição Ambiental , Expossoma , Animais , Humanos , Biomarcadores , Saúde Ambiental/métodosRESUMO
Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.
RESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.
RESUMO
As the most abundant glial cells in the central nervous system (CNS), astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress are many and complex. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stressor, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, the neurotoxic stress-induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechanistically, YTHDF2 RIP-sequencing identified MAP2K4 (MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed that Mn-exposed astrocytes mediate proinflammatory responses by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves as a key upstream 'molecular switch' controlling SEK1(MAP2K4)-JNK-cJUN proinflammatory signaling in astrocytes.
RESUMO
As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.
RESUMO
Occupational exposure to manganese (Mn) induces manganism and has been widely linked as a contributing environmental factor to Parkinson's disease (PD), featuring dramatic signature overlaps between the two in motor symptoms and clinical hallmarks. However, the molecular mechanism underlying such link remains elusive, and for combating PD, effective mechanism-based therapies are lacking. Here, we developed an adult Drosophila model of Mn toxicity to recapitulate key parkinsonian features, spanning behavioral deficits, neuronal loss, and dysfunctions in lysosome and mitochondria. We performed global metabolomics on flies at an early stage of toxicity and identified metabolism of the B vitamin, biotin (vitamin B 7 ), as a master pathway underpinning Mn toxicity with systemic, body-brain increases in Mn-treated groups compared to the controls. Using Btnd RNAi mutant flies, we show that biotin depletion exacerbates Mn-induced neurotoxicity, parkinsonism, and mitochondrial dysfunction; while in Mn-exposed wild-type flies, biotin feeding dramatically ameliorates these pathophenotypes. We further show in human induced stem cells (iPSCs)- differentiated midbrain dopaminergic neurons that the supplemented biotin protects against Mn-induced neuronal loss, cytotoxicity, and mitochondrial dysregulation. Finally, human data profiling biotin-related proteins show for PD cases elevated circulating levels of biotin transporters but not of metabolic enzymes compared to healthy controls, suggesting humoral biotin transport as a key event involved in PD. Taken together, our findings identified compensatory biotin pathway as a convergent, systemic driver of Mn toxicity and parkinsonian pathology, providing new basis for devising effective countermeasures against manganism and PD. Significance Statement: Environmental exposure to manganese (Mn) may increase the risk for Parkinson's disease (PD); however, the mechanistic basis linking the two remains unclear. Our adult fruit fly ( Drosophila ) model of Mn toxicity recapitulated key Parkinson's hallmarks in vivo spanning behavioral deficits, neuronal loss, and mitochondrial dysfunction. Metabolomics identified the biotin (vitamin B 7 ) pathway as a key mediator, featuring systemic biotin increases in the flies. Rescue trials leveraging biotin-deficient flies, wild-type flies, and human iPSC-derived dopaminergic neurons determined biotin as a driver of manganism, with the parkinsonian phenotypes dramatically reversed through biotin supplementation. Our findings, in line with overexpressed circulating biotin transporters observed in PD patients, suggest compensatory biotin pathway as a key to untangle the Mn-PD link for combating neurodegenerative disease.
RESUMO
Despite the growing recognition that gastrointestinal (GI) dysfunction is prevalent in Parkinson's disease (PD) and occurs as a major prodromal symptom of PD, its cellular and molecular mechanisms remain largely unknown. Among the various types of GI cells, enteric glial cells (EGCs), which resemble astrocytes in structure and function, play a critical role in the pathophysiology of many GI diseases including PD. Thus, we investigated how EGCs respond to the environmental pesticides rotenone (Rot) and tebufenpyrad (Tebu) in cell and animal models to better understand the mechanism underlying GI abnormalities. Both Rot and Tebu induce dopaminergic neuronal cell death through complex 1 inhibition of the mitochondrial respiratory chain. We report that exposing a rat enteric glial cell model (CRL-2690 cells) to these pesticides increased mitochondrial fission and reduced mitochondrial fusion by impairing MFN2 function. Furthermore, they also increased mitochondrial superoxide generation and impaired mitochondrial ATP levels and basal respiratory rate. Measurement of LC3, p62 and lysosomal assays revealed impaired autolysosomal function in ECGs during mitochondrial stress. Consistent with our recent findings that mitochondrial dysfunction augments inflammation in astrocytes and microglia, we found that neurotoxic pesticide exposure also enhanced the production of pro-inflammatory factors in EGCs in direct correlation with the loss in mitochondrial mass. Finally, we show that pesticide-induced mitochondrial defects functionally impaired smooth muscle velocity, acceleration, and total kinetic energy in a mixed primary culture of the enteric nervous system (ENS). Collectively, our studies demonstrate for the first time that exposure to environmental neurotoxic pesticides impairs mitochondrial bioenergetics and activates inflammatory pathways in EGCs, further augmenting mitochondrial dysfunction and pro-inflammatory events to induce gut dysfunction. Our findings have major implications in understanding the GI-related pathogenesis and progression of environmentally linked PD.
Assuntos
Doença de Parkinson , Praguicidas , Animais , Eixo Encéfalo-Intestino , Inflamação/induzido quimicamente , Mitocôndrias , Neuroglia , Doença de Parkinson/etiologia , Praguicidas/toxicidade , Ratos , Rotenona/toxicidadeRESUMO
PURPOSE OF REVIEW: Parkinson's disease (PD) is the most prevalent motor disorder and is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Though the pathology of PD is well established, the cause of this neuronal loss is not well understood. Approximately 90% of PD cases are sporadic, and the environment plays a significant role in disease pathogenesis. The etiology of PD is highly complex, with neuroinflammation being one of the most critical factors implicated in PD. However, the signaling mechanisms underlying neuroinflammation and its interaction with environmental factors are unclear. RECENT FINDINGS: Astroglia and microglia are the two principal cells that play an essential role in maintaining neuronal health in many ways, including through immunological means. Exposure to environmental stressors from various sources affects these glial cells leading to chronic and sustained inflammation. Recent epidemiological studies have identified an interaction among environmental factors and glial genes in Parkinson's disease. Mechanistic studies have shown that exposure to pesticides like rotenone and paraquat, neurotoxic metals like manganese and lead, and even diesel exhaust fumes induce glial activation by regulating various key inflammatory pathways, including the inflammasomes, NOX pathways, and others. This review aims to discuss the recent advances in understanding the mechanism of glial induction in response to environmental stressors and discuss the potential role of gene-environment interaction in driving glial activation.
Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos , Interação Gene-Ambiente , Humanos , Inflamassomos , MicrogliaRESUMO
Big data approaches have profoundly influenced state-of-the-art in many fields of research, with toxicology being no exception. Here, we use Parkinson's disease as a window through which to explore the challenges of a dual explosion of metabolomic data addressing the myriad environmental exposures individuals experience and genetic analyses implicating many different loci as risk factors for disease. We argue that new experimental approaches are needed to convert the growing body of omics data into molecular mechanisms of disease that can be therapeutically targeted in specific patients. We outline one attractive strategy, which capitalizes on the rapid generation time and advanced molecular tools available in the fruit fly, Drosophila, to provide a platform for mechanistic dissection and drug discovery.
Assuntos
Doença de Parkinson , Animais , Drosophila/genética , Exposição Ambiental , Interação Gene-Ambiente , Humanos , Doença de Parkinson/genética , Medicina de PrecisãoRESUMO
BACKGROUND: Mutations in LRRK2 are the most common cause of familial Parkinson's disease and typically cause disease in the context of abnormal aggregation and deposition of α-synuclein within affected brain tissue. METHODS: We combine genetic analysis of Lrrk-associated toxicity in a penetrant Drosophila model of wild type human α-synuclein neurotoxicity with biochemical analyses and modeling of LRRK2 toxicity in human neurons and transgenic mouse models. RESULTS: We demonstrate that Lrrk and α-synuclein interact to promote neuronal degeneration through convergent effects on the actin cytoskeleton and downstream dysregulation of mitochondrial dynamics and function. We find specifically that monomers and dimers of Lrrk efficiently sever actin and promote normal actin dynamics in vivo. Oligomerization of Lrrk, which is promoted by dominant Parkinson's disease-causing mutations, reduces actin severing activity in vitro and promotes excess stabilization of F-actin in vivo. Importantly, a clinically protective Lrrk mutant reduces oligomerization and α-synuclein neurotoxicity. CONCLUSIONS: Our findings provide a specific mechanistic link between two key molecules in the pathogenesis of Parkinson's disease, α-synuclein and LRRK2, and suggest potential new approaches for therapy development.