Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 168(3): 441-52, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15684033

RESUMO

Invadopodia are actin-rich membrane protrusions with a matrix degradation activity formed by invasive cancer cells. We have studied the molecular mechanisms of invadopodium formation in metastatic carcinoma cells. Epidermal growth factor (EGF) receptor kinase inhibitors blocked invadopodium formation in the presence of serum, and EGF stimulation of serum-starved cells induced invadopodium formation. RNA interference and dominant-negative mutant expression analyses revealed that neural WASP (N-WASP), Arp2/3 complex, and their upstream regulators, Nck1, Cdc42, and WIP, are necessary for invadopodium formation. Time-lapse analysis revealed that invadopodia are formed de novo at the cell periphery and their lifetime varies from minutes to several hours. Invadopodia with short lifetimes are motile, whereas long-lived invadopodia tend to be stationary. Interestingly, suppression of cofilin expression by RNA interference inhibited the formation of long-lived invadopodia, resulting in formation of only short-lived invadopodia with less matrix degradation activity. These results indicate that EGF receptor signaling regulates invadopodium formation through the N-WASP-Arp2/3 pathway and cofilin is necessary for the stabilization and maturation of invadopodia.


Assuntos
Extensões da Superfície Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fatores de Despolimerização de Actina , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/antagonistas & inibidores , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Proteína Adaptadora GRB2 , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Invasividade Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/fisiologia , Quinazolinas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Transfecção , Tirfostinas/farmacologia , Família de Proteínas da Síndrome de Wiskott-Aldrich , Proteína Neuronal da Síndrome de Wiskott-Aldrich , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia
2.
Cell Motil Cytoskeleton ; 66(6): 303-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19373774

RESUMO

Metastatic mammary carcinoma cells, which have previously been observed to form mature, matrix degrading invadopodia on a thick ECM matrix, are able to form invadopodia with similar characteristics on glass without previously applied matrix. They form in response to epidermal growth factor (EGF), and contain the usual invadopodium core proteins N-WASP, Arp2/3, cortactin, cofilin, and F-actin. The study of invadopodia on glass allows for higher resolution analysis including the use of total internal reflection microscopy and analysis of their relationship to other cell motility events, in particular, lamellipodium extension and chemotaxis toward an EGF gradient. Invadopodium formation on glass requires N-WASP and cortactin but not microtubules. In a gradient of EGF more invadopodia form on the side of the cells facing the source of EGF. In addition, depletion of N-WASP or cortactin, which blocks invadopodium fromation, inhibits chemotaxis of cells towards EGF. This appears to be a localized defect in chemotaxis since depletion of N-WASP or cortactin via siRNA had no effect on lamellipodium protrusion or barbed end generation at the lamellipodium's leading edge. Since chemotaxis to EGF by breast tumor cells is involved in metastasis, inhibiting N-WASP activity in breast tumor cells might prevent metastasis of tumor cells while not affecting chemotaxis-dependent innate immunity which depends on WASp function in macrophages.


Assuntos
Neoplasias da Mama/patologia , Quimiotaxia , Cortactina/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Quimiotaxia/genética , Cortactina/genética , Destrina/genética , Destrina/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/fisiologia , RNA Interferente Pequeno/genética , Ratos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
3.
Curr Protein Pept Sci ; 20(5): 408-424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30734675

RESUMO

Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.


Assuntos
Inteínas/genética , Engenharia de Proteínas/métodos , Processamento de Proteína/genética , Proteínas/química , Sítios de Ligação , Biocatálise , Técnicas Biossensoriais/métodos , Biotecnologia/métodos , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química
4.
J Cell Biol ; 180(6): 1245-60, 2008 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-18362183

RESUMO

We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous-related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.


Assuntos
Carcinoma/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Citocromo-B(5) Redutase/metabolismo , Neoplasias/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/ultraestrutura , Citocromo-B(5) Redutase/genética , Regulação para Baixo/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Forminas , Invasividade Neoplásica/fisiopatologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Ratos , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína rhoA de Ligação ao GTP/metabolismo
5.
J Cell Sci ; 120(Pt 19): 3465-74, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17855387

RESUMO

Cdc42 plays a central role in regulating the actin cytoskeleton and maintaining cell polarity. Here, we show that Cdc42 is crucial for epidermal growth factor (EGF)-stimulated protrusion in MTLn3 carcinoma cells. When stimulated with EGF, carcinoma cells showed a rapid increase in activated Cdc42 that is primarily localized to the protruding edge of the cells. siRNA-mediated knockdown of Cdc42 expression caused a decrease in EGF-stimulated protrusion and reduced cell motility in time-lapse studies. These changes were correlated with a decrease in barbed-end formation and Arp2/3 localization at the cell edge, and a marked defect in actin filament branching, as revealed by rotary-shadowing scanning electron microscopy. Upstream of Arp2/3, Cdc42 knockdown inhibited EGF-stimulated activation of PI 3-kinase at early (within 1 minute) but not late (within 3 minutes) time points. Membrane targeting of N-WASP, WAVE2 and IRSp53 were also inhibited. Effects on WAVE2 were not owing to Rac1 inhibition, because WAVE2 recruitment is unaffected by Rac1 knockdown. Our data suggest that Cdc42 activation is crucial for the regulation of actin polymerization in carcinoma cells, and required for both EGF-stimulated protrusion and cell motility independently of effects on Rac.


Assuntos
Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Carcinoma , Linhagem Celular Tumoral , Ativação Enzimática , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Tropomiosina/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
6.
J Cell Biol ; 179(4): 777-91, 2007 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18025308

RESUMO

We have investigated the effects of inhibiting the expression of cofilin to understand its role in protrusion dynamics in metastatic tumor cells, in particular. We show that the suppression of cofilin expression in MTLn3 cells (an apolar randomly moving amoeboid metastatic tumor cell) caused them to extend protrusions from only one pole, elongate, and move rectilinearly. This remarkable transformation was correlated with slower extension of fewer, more stable lamellipodia leading to a reduced turning frequency. Hence, the loss of cofilin caused an amoeboid tumor cell to assume a mesenchymal-type mode of movement. These phenotypes were correlated with the loss of uniform chemotactic sensitivity of the cell surface to EGF stimulation, demonstrating that to chemotax efficiently, a cell must be able to respond to chemotactic stimulation at any region on its surface. The changes in cell shape, directional migration, and turning frequency were related to the re-localization of Arp2/3 complex to one pole of the cell upon suppression of cofilin expression.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/fisiologia , Neoplasias Mamárias Experimentais/patologia , Fatores de Despolimerização de Actina/genética , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Tamanho Celular , Quimiotaxia/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Feminino , Microscopia de Vídeo , Modelos Biológicos , Metástase Neoplásica , RNA Interferente Pequeno/farmacologia , Fatores de Tempo , Transfecção
7.
J Biol Chem ; 280(7): 5836-42, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15579908

RESUMO

Activation of the epidermal growth factor (EGF) receptor can stimulate actin polymerization via the Arp2/3 complex using a number of signaling pathways, and specific stimulation conditions may control which pathways are activated. We have previously shown that localized stimulation of EGF receptor with EGF bound to beads results in localized actin polymerization and protrusion. Here we show that the actin polymerization is dependent upon activation of the Arp2/3 complex by neural Wiskott-Aldrich Syndrome protein (N-WASP) via Grb2 and Nck2. Suppression of Grb2 or Nck2 results in loss of localization of N-WASP at the activation site and reduced actin polymerization. Although cortactin has been found to synergize with N-WASP for Arp2/3-dependent actin polymerization in vitro, we find that cortactin can restrict N-WASP localization around EGF-bead-induced protrusions. In addition, cortactin-deficient cells have increased lamellipod dynamics but show reduced net translocation, suggesting that cortactin can contribute to cell polarity by controlling the extent of Arp2/3 activation by WASP family members and the stability of the F-actin network.


Assuntos
Actinas/química , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Bovinos , Linhagem Celular , Movimento Celular , Cortactina , Citoesqueleto/química , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteína Adaptadora GRB2 , Humanos , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas/metabolismo , Transporte Proteico , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteína da Síndrome de Wiskott-Aldrich , Família de Proteínas da Síndrome de Wiskott-Aldrich
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa