RESUMO
Secondary lymphoid organs (SLOs) are an important target for mRNA delivery in various applications. While the current delivery method relies on the drainage of nanoparticles to lymph nodes by intramuscular (IM) or subcutaneous (SC) injections, an efficient mRNA delivery carrier for SLOs-targeting delivery by systemic administration (IV) is highly desirable but yet to be available. In this study, we developed an efficient SLOs-targeting carrier using phosphatidylserine (PS), a well-known signaling molecule that promotes the endocytic activity of phagocytes and cellular entry of enveloped viruses. We adopted these biomimetic strategies and added PS into the standard four-component MC3-based LNP formulation (PS-LNP) to facilitate the cellular uptake of immune cells beyond the charge-driven targeting principle commonly used today. As a result, PS-LNP performed efficient protein expression in both lymph nodes and the spleen after IV administration. In vitro and in vivo characterizations on PS-LNP demonstrated a monocyte/macrophage-mediated SLOs-targeting delivery mechanism.
Assuntos
Nanopartículas , Fosfatidilserinas , Nanopartículas/química , RNA Interferente Pequeno/genética , RNA Mensageiro/genéticaRESUMO
The blood-brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5'-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their surface, cross the BBB, and enter the neurons in neuro-inflammatory sites. Produced from self-derived donor leukocytes, the EVs are immunologically inert, and enhanced the neuronal uptake of the packaged mRNA in a mouse model of low-grade chronic neuro-inflammation.