Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2211282119, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574646

RESUMO

Growing evidence suggests that fine particulate matter (PM2.5) likely increases the risks of dementia, yet little is known about the relative contributions of different constituents. Here, we conducted a nationwide population-based cohort study (2000 to 2017) by integrating the Medicare Chronic Conditions Warehouse database and two independently sourced datasets of high-resolution PM2.5 major chemical composition, including black carbon (BC), organic matter (OM), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+), and soil dust (DUST). To investigate the impact of long-term exposure to PM2.5 constituents on incident all-cause dementia and Alzheimer's disease (AD), hazard ratios for dementia and AD were estimated using Cox proportional hazards models, and penalized splines were used to evaluate potential nonlinear concentration-response (C-R) relationships. Results using two exposure datasets consistently indicated higher rates of incident dementia and AD for an increased exposure to PM2.5 and its major constituents. An interquartile range increase in PM2.5 mass was associated with a 6 to 7% increase in dementia incidence and a 9% increase in AD incidence. For different PM2.5 constituents, associations remained significant for BC, OM, SO42-, and NH4+ for both end points (even after adjustments of other constituents), among which BC and SO42- showed the strongest associations. All constituents had largely linear C-R relationships in the low exposure range, but most tailed off at higher exposure concentrations. Our findings suggest that long-term exposure to PM2.5 is significantly associated with higher rates of incident dementia and AD and that SO42-, BC, and OM related to traffic and fossil fuel combustion might drive the observed associations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Demência , Humanos , Idoso , Estados Unidos/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos de Coortes , Medicare , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poeira , Demência/induzido quimicamente , Demência/epidemiologia , Exposição Ambiental/efeitos adversos , China
2.
BMC Med ; 22(1): 262, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915026

RESUMO

BACKGROUND: A better understanding of lung cancer etiology and the development of screening biomarkers have important implications for lung cancer prevention. METHODS: We included 623 matched case-control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. The Benjamini-Hochberg method was used to correct for multiple comparisons. RESULTS: Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate (OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated metabolic pathways. CONCLUSIONS: This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly to lung cancer etiology which varied by smoking status.


Assuntos
Neoplasias Pulmonares , Metabolômica , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/diagnóstico , Masculino , Feminino , Metabolômica/métodos , Estudos de Casos e Controles , Pessoa de Meia-Idade , Idoso , Esfingomielinas/sangue
3.
Environ Sci Technol ; 58(23): 10162-10174, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810212

RESUMO

Residential biomass burning is an important source of black carbon (BC) exposure among rural communities in low- and middle-income countries. We collected 7165 personal BC samples and individual/household level information from 3103 pregnant women enrolled in the Household Air Pollution Intervention Network trial. Women in the intervention arm received free liquefied petroleum gas stoves and fuel throughout pregnancy; women in the control arm continued the use of biomass stoves. Median (IQR) postintervention BC exposures were 9.6 µg/m3 (5.2-14.0) for controls and 2.8 µg/m3 (1.6-4.8) for the intervention group. Using mixed models, we characterized predictors of BC exposure and assessed how exposure contrasts differed between arms by select predictors. Primary stove type was the strongest predictor (R2 = 0.42); the models including kerosene use, kitchen location, education, occupation, or stove use hours also provided additional explanatory power from the base model adjusted only for the study site. Our full, trial-wide, model explained 48% of the variation in BC exposures. We found evidence that the BC exposure contrast between arms differed by study site, adherence to the assigned study stove, and whether the participant cooked. Our findings highlight factors that may be addressed before and during studies to implement more impactful cookstove intervention trials.


Assuntos
Culinária , Humanos , Feminino , Gravidez , Adulto , Poluição do Ar em Ambientes Fechados , Fuligem , Carbono , Poluentes Atmosféricos , Exposição Ambiental
4.
Environ Sci Technol ; 56(11): 7350-7361, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35075906

RESUMO

Particulate oxidative potential may comprise a key health-relevant parameter of particulate matter (PM) toxicity. To identify biological perturbations associated with particulate oxidative potential and examine the underlying molecular mechanisms, we recruited 54 participants from two dormitories near and far from a congested highway in Atlanta, GA. Fine particulate matter oxidative potential ("FPMOP") levels at the dormitories were measured using dithiothreitol assay. Plasma and saliva samples were collected from participants four times for longitudinal high-resolution metabolic profiling. We conducted metabolome-wide association studies to identify metabolic signals with FPMOP. Leukotriene metabolism and galactose metabolism were top pathways associated with ≥5 FPMOP-related indicators in plasma, while vitamin E metabolism and leukotriene metabolism were found associated with most FPMOP indicators in saliva. We observed different patterns of perturbed pathways significantly associated with water-soluble and -insoluble FPMOPs, respectively. We confirmed five metabolites directly associated with FPMOP, including hypoxanthine, histidine, pyruvate, lactate/glyceraldehyde, and azelaic acid, which were implications of perturbations in acute inflammation, nucleic acid damage and repair, and energy perturbation. The unique metabolic signals were specific to FPMOP, but not PM mass, providing initial indication that FPMOP might constitute a more sensitive, health-relevant measure for elucidating etiologies related to PM2.5 exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Leucotrienos/metabolismo , Metaboloma , Estresse Oxidativo , Material Particulado/análise , Saliva/química , Saliva/metabolismo
5.
Environ Sci Technol ; 56(10): 6525-6536, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476389

RESUMO

In the omics era, saliva, a filtrate of blood, may serve as an alternative, noninvasive biospecimen to blood, although its use for specific metabolomic applications has not been fully evaluated. We demonstrated that the saliva metabolome may provide sensitive measures of traffic-related air pollution (TRAP) and associated biological responses via high-resolution, longitudinal metabolomics profiling. We collected 167 pairs of saliva and plasma samples from a cohort of 53 college student participants and measured corresponding indoor and outdoor concentrations of six air pollutants for the dormitories where the students lived. Grand correlation between common metabolic features in saliva and plasma was moderate to high, indicating a relatively consistent association between saliva and blood metabolites across subjects. Although saliva was less associated with TRAP compared to plasma, 25 biological pathways associated with TRAP were detected via saliva and accounted for 69% of those detected via plasma. Given the slightly higher feature reproducibility found in saliva, these findings provide some indication that the saliva metabolome offers a sensitive and practical alternative to blood for characterizing individual biological responses to environmental exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes , Saliva/química
6.
Environ Sci Technol ; 56(11): 7194-7202, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34932337

RESUMO

Mounting epidemiological evidence has documented the associations between long-term exposure to multiple air pollutants and increased mortality. There is a pressing need to determine whether risks persist at low concentrations including below current national standards. Air pollution levels have decreased in the United States, and better understanding of the health effects of low-level air pollution is essential for the amendment of National Ambient Air Quality Standards (NAAQS). A nationwide, population-based, open cohort study was conducted to estimate the association between long-term exposure to low-level PM2.5, NO2, O3, and all-cause mortality. The study population included all Medicare enrollees (ages 65 years or older) in the contiguous U.S. from 2001 to 2017. We further defined three low-exposure subcohorts comprised of Medicare enrollees who were always exposed to low-level PM2.5 (annual mean ≤12-µg/m3), NO2 (annual mean ≤53-ppb), and O3 (warm-season mean ≤50-ppb), respectively, over the study period. Of the 68.7-million Medicare enrollees, 33.1% (22.8-million, mean age 75.9 years), 93.8% (64.5-million, mean age 76.2 years), and 65.0% (44.7-million, mean age 75.6 years) were always exposed to low-level annual PM2.5, annual NO2, and warm-season O3 over the study period, respectively. Among the low-exposure cohorts, a 10-µg/m3 increase in PM2.5, 10-ppb increase in NO2, and 10-ppb increase in warm-season O3, were, respectively, associated with an increase in mortality rate ranging between 10 and 13%, 2 and 4%, and 12 and 14% in single-pollutant models, and between 6 and 8%, 1 and 3%, and 9 and 11% in tripollutant models, using three statistical approaches. There was strong evidence of linearity in concentration-response relationships for PM2.5 and NO2 at levels below the current NAAQS, suggesting that no safe threshold exists for health-harmful pollution levels. For O3, the concentration-response relationship shows an increasingly positive association at levels above 40-ppb. In conclusion, exposure to low levels of PM2.5, NO2, and warm-season O3 was associated with an increased risk of all-cause mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Medicare , Dióxido de Nitrogênio/análise , Material Particulado/análise , Estados Unidos/epidemiologia
7.
Environ Res ; 196: 110923, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705771

RESUMO

BACKGROUND: Rising temperatures due to climate change are expected to impact human adaptive response, including changes to home cooling and ventilation patterns. These changes may affect air pollution exposures via alteration in residential air exchange rates, affecting indoor infiltration of outdoor particles. We conducted a field study examining associations between particle infiltration and temperature to inform future studies of air pollution health effects. METHODS: We measured indoor fine particulate matter (PM2.5) in Atlanta in 60 homes (810 sampling-days). Indoor-outdoor sulfur ratios were used to estimate particle infiltration, using central site outdoor sulfur concentrations. Linear and mixed-effects models were used to examine particle infiltration ratio-temperature relationships, based on which we incorporated projected meteorological values (Representative Concentration Pathways intermediate scenario RCP 4.5) to estimate particle infiltration ratios in 20-year future (2046-2065) and past (1981-2000) scenarios. RESULTS: The mean particle infiltration ratio in Atlanta was 0.70 ± 0.30, with a 0.21 lower ratio in summer compared to transition seasons (spring, fall). Particle infiltration ratios were 0.19 lower in houses using heating, ventilation, and air conditioning (HVAC) systems compared to those not using HVAC. We observed significant associations between particle infiltration ratios and both linear and quadratic models of ambient temperature for homes using natural ventilation and those using HVAC. Future temperature was projected to increase by 2.1 °C in Atlanta, which corresponds to an increase of 0.023 (3.9%) in particle infiltration ratios during cooler months and a decrease of 0.037 (6.2%) during warmer months. DISCUSSION: We estimated notable changes in particle infiltration ratio in Atlanta for different 20-year periods, with differential seasonal patterns. Moreover, when stratified by HVAC usage, increases in future ambient temperature due to climate change were projected to enhance seasonal differences in PM2.5 infiltration in Atlanta. These analyses can help minimize exposure misclassification in epidemiologic studies of PM2.5, and provide a better understanding of the potential influence of climate change on PM2.5 health effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Mudança Climática , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
8.
Environ Sci Technol ; 54(19): 11673-11691, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32813503

RESUMO

Infections with enteric pathogens impose a heavy disease burden, especially among young children in low-income countries. Recent findings from randomized controlled trials of water, sanitation, and hygiene interventions have raised questions about current methods for assessing environmental exposure to enteric pathogens. Approaches for estimating sources and doses of exposure suffer from a number of shortcomings, including reliance on imperfect indicators of fecal contamination instead of actual pathogens and estimating exposure indirectly from imprecise measurements of pathogens in the environment and human interaction therewith. These shortcomings limit the potential for effective surveillance of exposures, identification of important sources and modes of transmission, and evaluation of the effectiveness of interventions. In this review, we summarize current and emerging approaches used to characterize enteric pathogen hazards in different environmental media as well as human interaction with those media (external measures of exposure), and review methods that measure human infection with enteric pathogens as a proxy for past exposure (internal measures of exposure). We draw from lessons learned in other areas of environmental health to highlight how external and internal measures of exposure can be used to more comprehensively assess exposure. We conclude by recommending strategies for advancing enteric pathogen exposure assessments.


Assuntos
Higiene , Saneamento , Criança , Pré-Escolar , Exposição Ambiental , Fezes , Humanos , Pobreza
9.
Environ Res ; 184: 109292, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179263

RESUMO

BACKGROUND: Sickle cell disease (SCD) is an inherited, autosomal recessive blood disorder, among the most prevalent genetic diseases, globally. While the genetic and hemolytic dynamics of SCD have been well-characterized, the etiology of SCD-related pathophysiological processes is unclear. Although limited, observational evidence suggests that environmental factors, including urban air pollution, may play a role. OBJECTIVES: We assessed whether daily ambient air pollution concentrations are associated with corresponding emergency department (ED) visit counts for acute SCD exacerbations in Atlanta, Georgia, during a 9-year (2005-2013) period. We also examined heterogeneity in response by age and sex. METHODS: ED visit data were from 41 hospitals in the 20-county Atlanta, GA area. Associations between daily air pollution levels for 8 urban air pollutants and counts of SCD related ED visits were estimated using Poisson generalized linear models. RESULTS: We observed positive associations between pollutants generally indicative of traffic emissions and corresponding SCD ED visits [e.g., rate ratio of 1.022 (95% CI: 1.002, 1.043) per interquartile range increase in carbon monoxide]. Age stratified analyses indicated stronger associations with traffic pollutants among children (0-18 years), as compared to older age strata. Associations involving other pollutants, including ozone and particulate matter and for models of individuals >18 years old, were consistent a null hypothesis of no association. DISCUSSION: This analysis represents the first North American study to examine acute risk among individuals with SCD to urban air pollution and provide evidence of urban air pollution, especially from traffic sources, as a trigger for acute exacerbations. These findings are consistent with a hypothesis that biological pathways, including several centrally associated with oxidative stress, may contribute towards enhanced susceptibility in individuals with SCD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Anemia Falciforme , Adolescente , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Anemia Falciforme/epidemiologia , Criança , Serviço Hospitalar de Emergência , Georgia/epidemiologia , Humanos , Material Particulado/análise , Material Particulado/toxicidade
10.
Environ Res ; 184: 109389, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32209498

RESUMO

Accurately characterizing human exposures to traffic-related air pollutants (TRAPs) is critical to public health protection. However, quantifying exposure to this single source is challenging, given its extremely heterogeneous chemical composition. Efforts using single-species tracers of TRAP are, thus, lacking in their ability to accurately reflect exposures to this complex mixture. There have been recent discussions centered on adopting a multipollutant perspective for sources with many emitted pollutants to maximize the benefits of control expenditures as well as to minimize population and ecosystem exposure. As part of a larger study aimed to assess a complete emission-to-exposure pathway of primary traffic pollution and understand exposure of individuals in the near-road environment, an intensive field campaign measured TRAPs and related data (e.g., meteorology, traffic counts, and regional air pollutant levels) in Atlanta along one of the busiest highway corridors in the US. Given the dynamic nature of the near-road environment, a multipollutant exposure metric, the Integrated Mobile Source Indicator (IMSI), which was generated based on emissions-based ratios, was calculated and compared to traditional single-species methods for assessing exposure to mobile source emissions. The current analysis examined how both traditional and non-traditional metrics vary spatially and temporally in the near-road environment, how they compare with each other, and whether they have the potential to offer more accurate means of assigning exposures to primary traffic emissions. The results indicate that compared to the traditional single pollutant specie, the multipollutant IMSI metric provided a more spatially stable method for assessing exposure, though variations occurred based on location with varying results among the six sites within a kilometer of the highway.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ecossistema , Monitoramento Ambiental , Humanos , Emissões de Veículos/análise
11.
Atmos Environ (1994) ; 2242020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32189987

RESUMO

Exposure to vehicular emissions has been linked to numerous adverse health effects. In response to the arising concerns, near-road monitoring is conducted to better characterize the impact of mobile source emissions on air quality and exposure in the near-road environment. An intensive measurement campaign measured traffic-related air pollutants (TRAPs) and related data (e.g., meteorology, traffic, regional air pollutant levels) in Atlanta, along one of the busiest highway corridors in the US. Given the complexity of the near-road environment, the study aimed to compare two near-road monitors, located in close proximity to each other, to assess how observed similarities and differences between measurements at these two sites inform the siting of other near-road monitoring stations. TRAP measurements, including carbon monoxide (CO) and nitrogen dioxide (NO2), are analyzed at two roadside monitors in Atlanta, GA located within 325m of each other. Both meteorological and traffic conditions were monitored to assess the temporal impact of these factors on traffic-related pollutant concentrations. The meteorological factors drove the diurnal variability of primary pollutant concentration more than traffic count. In spite of their proximity, while the CO and NO2 concentrations were correlated with similar diurnal variations, pollutant concentrations at the two closely sited monitors differed, likely due to the differences in the siting characteristics reducing the dispersion of the primary emissions out of the near-road environment. Overall, the near-road TRAP concentrations at all sites were not as elevated as seen in prior studies, supporting that decreased vehicle emissions have led to significant reductions in TRAP levels, even along major interstates. Further, the differences in the observed levels show that use of single near-road observations will not capture pollutant levels representative of the local near-road environment and that additional approaches (e.g., air quality models) are needed to characterize exposures.

13.
Environ Res ; 166: 595-601, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29982147

RESUMO

Air pollution has been linked to adverse cardiovascular outcomes; however, susceptibility may vary by population. Puerto Rican adults living in the US may be a susceptible group due to a high rate of adverse cardiovascular events. We evaluated the effect of changes in ambient particle number concentration (PNC, a measure of ultrafine particles) and effects on biomarkers of cardiovascular risk in the Boston Puerto Rican Health Study (BPRHS), a longitudinal cohort (n = 1499). Ambient PNC was measured at a fixed site between 2004 and 2013 and daily mean concentrations were used to construct PNC metrics, including lags of 0, 1 and 2 days and moving averages (MAs) of 3, 7 and 28 days. We examined the association of each metric with C-reactive protein (CRP) and blood pressure. Each model included subject-specific random intercepts to account for multiple measurements. An interquartile range (IQR) increase in PNC was associated with CRP for all metrics, notably a 3-day increase in PNC was associated with a 7.1% (95% CI: 2.0%, 12.2%) increase in CRP. Significant associations with CRP were seen in women, but not men; with current and former (but not non-) smokers; participants younger (but not older) than 65 y; those without diabetes (but not with), and those with (but not without), hypertension. Our study extends knowledge about the health effects of air pollution to a vulnerable population that has been understudied.


Assuntos
Poluição do Ar/análise , Biomarcadores/sangue , Sistema Cardiovascular , Adulto , Pressão Sanguínea , Boston/epidemiologia , Proteína C-Reativa/análise , Feminino , Hispânico ou Latino , Humanos , Estudos Longitudinais , Masculino , Material Particulado , Porto Rico/etnologia
14.
Environ Res ; 165: 210-219, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29727821

RESUMO

Near-road monitoring creates opportunities to provide direct measurement on traffic-related air pollutants and to better understand the changing near-road environment. However, how such observations represent traffic-related air pollution exposures for estimating adverse health effect in epidemiologic studies remains unknown. A better understanding of potential exposure measurement error when utilizing near-road measurement is needed for the design and interpretation of the many observational studies linking traffic pollution and adverse health. The Dorm Room Inhalation to Vehicle Emission (DRIVE) study conducted near-road measurements of several single traffic indicators at six indoor and outdoor sites ranging from 0.01 to 2.3 km away from a heavily-trafficked (average annual daily traffic over 350,000) highway artery between September 2014 to January 2015. We examined spatiotemporal variability trends and assessed the potential for bias and errors when using a roadside monitor as a primary traffic pollution exposure surrogate, in lieu of more spatially-refined, proximal exposure indicators. Pollutant levels measured during DRIVE showed a low impact of this highway hotspot source. Primary pollutant species, including NO, CO, and BC declined to near background levels by 20-30 m from the highway source. Patterns of correlation among the sites also varied by pollutant and time of day. NO2, specifically, exhibited spatial trends that differed from other single-pollutant primary traffic indicators. This finding provides some indication of limitations in the use of NO2 as a primary traffic exposure indicator in panel-based health effect studies. Interestingly, roadside monitoring of NO, CO, and BC tended to be more strongly correlated with sites, both near and far from the road, during morning rush hour periods, and more weakly correlated during other periods of the day. We found pronounced attenuation of observed changes in health effects when using measured pollutant from the near-road monitor as a surrogate for true exposure, and the magnitude varied substantially over the course of the day. Caution should be taken when using near-road monitoring network observations, alone, to investigate health effects of traffic pollutants.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Viés , Projetos de Pesquisa
15.
Epidemiology ; 28(2): 197-206, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27984424

RESUMO

BACKGROUND: The health effects of ambient volatile organic compounds (VOCs) have received less attention in epidemiologic studies than other commonly measured ambient pollutants. In this study, we estimated acute cardiorespiratory effects of ambient VOCs in an urban population. METHODS: Daily concentrations of 89 VOCs were measured at a centrally-located ambient monitoring site in Atlanta and daily counts of emergency department visits for cardiovascular diseases and asthma in the five-county Atlanta area were obtained for the 1998-2008 period. To understand the health effects of the large number of species, we grouped these VOCs a priori by chemical structure and estimated the associations between VOC groups and daily counts of emergency department visits in a time-series framework using Poisson regression. We applied three analytic approaches to estimate the VOC group effects: an indicator pollutant approach, a joint effect analysis, and a random effect meta-analysis, each with different assumptions. We performed sensitivity analyses to evaluate copollutant confounding. RESULTS: Hydrocarbon groups, particularly alkenes and alkynes, were associated with emergency department visits for cardiovascular diseases, while the ketone group was associated with emergency department visits for asthma. CONCLUSIONS: The associations observed between emergency department visits for cardiovascular diseases and alkenes and alkynes may reflect the role of traffic exhaust, while the association between asthma visits and ketones may reflect the role of secondary organic compounds. The different patterns of associations we observed for cardiovascular diseases and asthma suggest different modes of action of these pollutants or the mixtures they represent.


Assuntos
Poluição do Ar/estatística & dados numéricos , Alcenos , Alcinos , Asma/epidemiologia , Doenças Cardiovasculares/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Cetonas , Compostos Orgânicos Voláteis , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Exposição Ambiental/estatística & dados numéricos , Feminino , Georgia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição de Poisson , Análise de Regressão , Adulto Jovem
16.
Environ Health ; 16(1): 58, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615066

RESUMO

BACKGROUND AND METHODS: Evidence shows that both the physical and social environments play a role in the development of cardiovascular disease. The purpose of this systematic review is two-fold: First, we summarize research from the past 12 years from the growing number of studies focused on effect modification of the relationships between air pollution and cardiovascular disease (CVD) outcomes by socioeconomic position (SEP) and; second, we identify research gaps throughout the published literature on this topic and opportunities for addressing these gaps in future study designs. RESULTS: We identified 30 articles that examined the modifying effects of either material resources or psychosocial stress (both related to SEP) on associations between short and long-term air pollution exposure and CVD endpoints. Although 18 articles identified at least one interaction between an air pollutant and material resource indicator, 11 others did not. Support for susceptibility to air pollution by psychosocial stress was weaker; however, only three articles tested this hypothesis. Further studies are warranted to investigate how air pollution and SEP together may influence CVD. CONCLUSIONS: We recommend that such research include thorough assessment of air pollution and SEP correlations, including spatial correlation; investigate air pollution indices or multi-pollutant models; use standardized metrics of SEP to enhance comparability across studies; and evaluate potentially susceptible populations.


Assuntos
Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Suscetibilidade a Doenças/epidemiologia , Exposição Ambiental , Classe Social , Estresse Fisiológico , Poluentes Atmosféricos/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Suscetibilidade a Doenças/induzido quimicamente , Prevalência
17.
Epidemiology ; 26(4): 546-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25901844

RESUMO

BACKGROUND: Effects of traffic-related exposures on respiratory health are well documented, but little information is available about whether asthma control influences individual susceptibility. We analyzed data from the Atlanta Commuter Exposure study to evaluate modification of associations between rush-hour commuting, in- vehicle air pollution, and selected respiratory health outcomes by asthma control status. METHODS: Between 2009 and 2011, 39 adults participated in Atlanta Commuter Exposure, and each conducted two scripted rush-hour highway commutes. In-vehicle particulate components were measured during all commutes. Among adults with asthma, we evaluated asthma control by questionnaire and spirometry. Exhaled nitric oxide, forced expiratory volume in 1 second (FEV1), and other metrics of respiratory health were measured precommute and 0, 1, 2, and 3 hours postcommute. We used mixed effects linear regression to evaluate associations between commute-related exposures and postcommute changes in metrics of respiratory health by level of asthma control. RESULTS: We observed increased exhaled nitric oxide across all levels of asthma control compared with precommute measurements, with largest postcommute increases observed among participants with below-median asthma control (2 hours postcommute: 14.6% [95% confidence interval {CI} = 5.7, 24.2]; 3 hours postcommute: 19.5% [95% CI = 7.8, 32.5]). No associations between in-vehicle pollutants and percent of predicted FEV1 were observed, although higher PM2.5 was associated with lower FEV1 % predicted among participants with below-median asthma control (3 hours postcommute: -7.2 [95% CI = -11.8, -2.7]). CONCLUSIONS: Level of asthma control may influence respiratory response to in-vehicle exposures experienced during rush-hour commuting.


Assuntos
Asma/fisiopatologia , Exposição Ambiental/análise , Pulmão/fisiopatologia , Material Particulado/análise , Meios de Transporte/estatística & dados numéricos , Adulto , Poluição do Ar/análise , Asma/tratamento farmacológico , Testes Respiratórios , Estudos de Casos e Controles , Feminino , Volume Expiratório Forçado , Humanos , Modelos Lineares , Masculino , Fluxo Máximo Médio Expiratório , Óxido Nítrico , Espirometria , Capacidade Vital
18.
Environ Res ; 133: 66-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906070

RESUMO

BACKGROUND: Exposure to traffic pollution has been linked to numerous adverse health endpoints. Despite this, limited data examining traffic exposures during realistic commutes and acute response exists. OBJECTIVES: We conducted the Atlanta Commuters Exposures (ACE-1) Study, an extensive panel-based exposure and health study, to measure chemically-resolved in-vehicle exposures and corresponding changes in acute oxidative stress, lipid peroxidation, pulmonary and systemic inflammation and autonomic response. METHODS: We recruited 42 adults (21 with and 21 without asthma) to conduct two 2-h scripted highway commutes during morning rush hour in the metropolitan Atlanta area. A suite of in-vehicle particulate components were measured in the subjects' private vehicles. Biomarker measurements were conducted before, during, and immediately after the commutes and in 3 hourly intervals after commutes. RESULTS: At measurement time points within 3h after the commute, we observed mild to pronounced elevations relative to baseline in exhaled nitric oxide, C-reactive-protein, and exhaled malondialdehyde, indicative of pulmonary and systemic inflammation and oxidative stress initiation, as well as decreases relative to baseline levels in the time-domain heart-rate variability parameters, SDNN and rMSSD, indicative of autonomic dysfunction. We did not observe any detectable changes in lung function measurements (FEV1, FVC), the frequency-domain heart-rate variability parameter or other systemic biomarkers of vascular injury. Water soluble organic carbon was associated with changes in eNO at all post-commute time-points (p<0.0001). CONCLUSIONS: Our results point to measureable changes in pulmonary and autonomic biomarkers following a scripted 2-h highway commute.


Assuntos
Poluição do Ar/efeitos adversos , Vias Autônomas/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Mediadores da Inflamação/intoxicação , Emissões de Veículos/intoxicação , Doença Aguda , Adulto , Poluição do Ar/análise , Asma/induzido quimicamente , Asma/patologia , Automóveis , Vias Autônomas/patologia , Biomarcadores/análise , Exposição Ambiental/análise , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Material Particulado/intoxicação , Adulto Jovem
19.
Environ Health ; 13: 56, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24990361

RESUMO

BACKGROUND: Development of exposure metrics that capture features of the multipollutant environment are needed to investigate health effects of pollutant mixtures. This is a complex problem that requires development of new methodologies. OBJECTIVE: Present a self-organizing map (SOM) framework for creating ambient air quality classifications that group days with similar multipollutant profiles. METHODS: Eight years of day-level data from Atlanta, GA, for ten ambient air pollutants collected at a central monitor location were classified using SOM into a set of day types based on their day-level multipollutant profiles. We present strategies for using SOM to develop a multipollutant metric of air quality and compare results with more traditional techniques. RESULTS: Our analysis found that 16 types of days reasonably describe the day-level multipollutant combinations that appear most frequently in our data. Multipollutant day types ranged from conditions when all pollutants measured low to days exhibiting relatively high concentrations for either primary or secondary pollutants or both. The temporal nature of class assignments indicated substantial heterogeneity in day type frequency distributions (~1%-14%), relatively short-term durations (<2 day persistence), and long-term and seasonal trends. Meteorological summaries revealed strong day type weather dependencies and pollutant concentration summaries provided interesting scenarios for further investigation. Comparison with traditional methods found SOM produced similar classifications with added insight regarding between-class relationships. CONCLUSION: We find SOM to be an attractive framework for developing ambient air quality classification because the approach eases interpretation of results by allowing users to visualize classifications on an organized map. The presented approach provides an appealing tool for developing multipollutant metrics of air quality that can be used to support multipollutant health studies.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Redes Neurais de Computação , Estações do Ano , Fatores de Tempo , Tempo (Meteorologia)
20.
ScientificWorldJournal ; 2014: 878704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045751

RESUMO

Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 µg/m(3), with an average of 28.7 µg/m(3). Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 µg/m(3)) in the summer (April-June) months compared to winter (October-December) months (26.0 µg/m(3)) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Oriente Médio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa