Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 111(4-5): 345-363, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609897

RESUMO

The mantled phenotype is an abnormal somaclonal variant arising from the oil palm cloning process and severe phenotypes lead to oil yield losses. Hypomethylation of the Karma retrotransposon within the B-type MADS-box EgDEF1 gene has been associated with this phenotype. While abnormal Karma-EgDEF1 hypomethylation was detected in mantled clones, we examined the methylation state of Karma in ortets that gave rise to high mantling rates in their clones. Small RNAs (sRNAs) were proposed to play a role in Karma hypomethylation as part of the RNA-directed DNA methylation process, hence differential expression analysis of sRNAs between the ortet groups was conducted. While no sRNA was differentially expressed at the Karma-EgDEF1 region, three sRNA clusters were differentially regulated in high-mantling ortets. The first two down-regulated clusters were possibly derived from long non-coding RNAs while the third up-regulated cluster was derived from the intron of a DnaJ chaperone gene. Several predicted mRNA targets for the first two sRNA clusters conversely displayed increased expression in high-mantling relative to low-mantling ortets. These predicted mRNA targets may be associated with defense or pathogenesis response. In addition, several differentially methylated regions (DMRs) were identified in Karma and its surrounding regions, mainly comprising subtle CHH hypomethylation in high-mantling ortets. Four of the 12 DMRs were located in a region corresponding to hypomethylated areas at the 3'end of Karma previously reported in mantled clones. Further investigations on these sRNAs and DMRs may indicate the predisposition of certain ortets towards mantled somaclonal variation.


Assuntos
Arecaceae , Mães , Feminino , Humanos , Arecaceae/genética , Metilação de DNA , RNA Mensageiro/metabolismo , Células Clonais/metabolismo
2.
Nature ; 525(7570): 533-7, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26352475

RESUMO

Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.


Assuntos
Arecaceae/genética , Metilação de DNA , Epigênese Genética/genética , Epigenômica , Genoma de Planta/genética , Fenótipo , Retroelementos/genética , Alelos , Processamento Alternativo/genética , Arecaceae/metabolismo , Frutas/genética , Genes Homeobox/genética , Estudos de Associação Genética , Íntrons/genética , Dados de Sequência Molecular , Óleo de Palmeira , Óleos de Plantas/análise , Óleos de Plantas/metabolismo , Sítios de Splice de RNA/genética , RNA Interferente Pequeno/genética
3.
Plant Cell Rep ; 40(7): 1141-1154, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33929599

RESUMO

KEY MESSAGE: Potentially embryogenic oil palms can be identified through leaf transcriptomic signatures. Differential expression of genes involved in flowering time, and stress and light responses may associate with somatic embryogenesis potential. Clonal propagation is an attractive approach for the mass propagation of high yielding oil palms. A major issue hampering the effectiveness of oil palm tissue culture is the low somatic embryogenesis rate. Previous studies have identified numerous genes involved in oil palm somatic embryogenesis, but their association with embryogenic potential has not been determined. In this study, differential expression analysis of leaf transcriptomes from embryogenic and non-embryogenic mother palms revealed that transcriptome profiles from non- and poor embryogenic mother palms were more similar than highly embryogenic palms. A total of 171 genes exhibiting differential expression in non- and low embryogenesis groups could also discriminate high from poor embryogenesis groups of another tissue culture agency. Genes related to flowering time or transition such as FTIP, FRIGIDA-LIKE, and NF-YA were up-regulated in embryogenic ortets, suggesting that reproduction timing of the plant may associate with somatic embryogenesis potential. Several light response or photosynthesis-related genes were down-regulated in embryogenic ortets, suggesting a link between photosynthesis activity and embryogenic potential. As expression profiles of the differentially expressed genes are very similar between non- and low embryogenic groups, machine learning approaches with several candidate genes may generate a more sensitive model to better discriminate non-embryogenic from embryogenic ortets.


Assuntos
Arecaceae/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Sementes/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arecaceae/efeitos dos fármacos , Arecaceae/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética
4.
Plant Cell Rep ; 39(9): 1219-1233, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32591850

RESUMO

KEY MESSAGE: Several hypomethylated sites within the Karma region of EgDEF1 and hotspot regions in chromosomes 1, 2, 3, and 5 may be associated with mantling. One of the main challenges faced by the oil palm industry is fruit abnormalities, such as the "mantled" phenotype that can lead to reduced yields. This clonal abnormality is an epigenetic phenomenon and has been linked to the hypomethylation of a transposable element within the EgDEF1 gene. To understand the epigenome changes in clones, methylomes of clonal oil palms were compared to methylomes of seedling-derived oil palms. Whole-genome bisulfite sequencing data from seedlings, normal, and mantled clones were analyzed to determine and compare the context-specific DNA methylomes. In seedlings, coding and regulatory regions are generally hypomethylated while introns and repeats are extensively methylated. Genes with a low number of guanines and cytosines in the third position of codons (GC3-poor genes) were increasingly methylated towards their 3' region, while GC3-rich genes remain demethylated, similar to patterns in other eukaryotic species. Predicted promoter regions were generally hypomethylated in seedlings. In clones, CG, CHG, and CHH methylation levels generally decreased in functionally important regions, such as promoters, 5' UTRs, and coding regions. Although random regions were found to be hypomethylated in clonal genomes, hypomethylation of certain hotspot regions may be associated with the clonal mantling phenotype. Our findings, therefore, suggest other hypomethylated CHG sites within the Karma of EgDEF1 and hypomethylated hotspot regions in chromosomes 1, 2, 3 and 5, are associated with mantling.


Assuntos
Arecaceae/genética , Metilação de DNA , Arecaceae/citologia , Sítios de Ligação , Células Clonais , Elementos de DNA Transponíveis , Epigenoma , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Íntrons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Plântula/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
5.
G3 (Bethesda) ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918881

RESUMO

Elaeis guineensis and E. oleifera are the two species of oil palm. E. guineensis is the most widely cultivated commercial species, and introgression of desirable traits from E. oleifera is ongoing. We report an improved E. guineensis genome assembly with substantially increased continuity and completeness, as well as the first chromosome-scale E. oleifera genome assembly. Each assembly was obtained by integration of long-read sequencing, proximity ligation sequencing, optical mapping and genetic mapping. High interspecific genome conservation is observed between the two species. The study provides the most extensive gene annotation to date, including 46,697 E. guineensis and 38,658 E. oleifera gene predictions. Analyses of repetitive element families further resolve the DNA repeat architecture of both genomes. Comparative genomic analyses identified experimentally validated small structural variants between the oil palm species and resolved the mechanism of chromosomal fusions responsible for the evolutionary descending dysploidy from 18 to 16 chromosomes.

6.
Plant Reprod ; 32(2): 167-179, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30467592

RESUMO

KEY MESSAGE: Transcriptomes generated by laser capture microdissected abnormal staminodes revealed adoption of carpel programming during organ initiation with decreased expression of numerousHSPs,EgDEF1, EgGLO1but increasedLEAFYexpression. The abnormal mantled phenotype in oil palm involves a feminization of the male staminodes into pseudocarpels in pistillate inflorescences. Previous studies on oil palm flowering utilized entire inflorescences or spikelets, which comprised not only the male and female floral organs, but the surrounding tissues as well. Laser capture microdissection coupled with RNA sequencing was conducted to investigate the specific transcriptomes of male and female floral organs from normal and mantled female inflorescences. A higher number of differentially expressed genes (DEGs) were identified in abnormal versus normal male organs compared with abnormal versus normal female organs. In addition, the abnormal male organ transcriptome closely mimics the transcriptome of abnormal female organ. While the transcriptome of abnormal female organ was relatively similar to the normal female organ, a substantial amount of female DEGs encode HEAT SHOCK PROTEIN genes (HSPs). A similar high amount (20%) of male DEGs encode HSPs as well. As these genes exhibited decreased expression in abnormal floral organs, mantled floral organ development may be associated with lower stress indicators. Stamen identity genes EgDEF1 and EgGLO1 were the main floral regulatory genes with decreased expression in abnormal male organs or pseudocarpel initials. Expression of several floral transcription factors was elevated in pseudocarpel initials, notably LEAFY, FIL and DL orthologs, substantiating the carpel specification programming of abnormal staminodes. Specific transcriptomes thus obtained through this approach revealed a host of differentially regulated genes in pseudocarpel initials compared to normal male staminodes.


Assuntos
Arecaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Choque Térmico/genética , Fatores de Transcrição/genética , Transcriptoma , Flores/genética , Perfilação da Expressão Gênica , Inflorescência/genética , Fenótipo , Proteínas de Plantas/genética
7.
Mol Biotechnol ; 48(2): 156-64, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21153717

RESUMO

In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.


Assuntos
Arecaceae/embriologia , Arecaceae/metabolismo , Ácido Abscísico/metabolismo , Arecaceae/genética , Hibridização In Situ , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa