Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 70(8): 1525-1533, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31179485

RESUMO

BACKGROUND: In a phase 3 trial, letermovir reduced clinically significant cytomegalovirus infections (CS-CMVi) and all-cause mortality at week 24 versus placebo in CMV-seropositive allogeneic hematopoietic cell transplantation (HCT) recipients. This post hoc analysis of phase 3 data further investigated the effects of letermovir on all-cause mortality. METHODS: Kaplan-Meier survival curves were generated by treatment group for all-cause mortality. Observations were censored at trial discontinuation for reasons other than death or at trial completion. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox modeling, adjusting for risk factors associated with mortality. RESULTS: Of 495 patients with no detectable CMV DNA at randomization, 437 had vital-status data available through week 48 post-HCT at trial completion (101 deaths, 20.4%). Following letermovir prophylaxis, the HR for all-cause mortality was 0.58 (95% CI, 0.35-0.98; P = .04) at week 24 and 0.74 (95% CI, 0.49-1.11; P = .14) at week 48 post-HCT versus placebo. Incidence of all-cause mortality through week 48 post-HCT in the letermovir group was similar in patients with or without CS-CMVi (15.8 vs 19.4%; P = .71). However, in the placebo group, all-cause mortality at week 48 post-HCT was higher in patients with versus those without CS-CMVi (31.0% vs 18.2%; P = .02). The HR for all-cause mortality in patients with CS-CMVi was 0.45 (95% CI, 0.21-1.00; P = .05) at week 48 for letermovir versus placebo. CONCLUSIONS: Letermovir may reduce mortality by preventing or delaying CS-CMVi in HCT recipients. CLINICAL TRIALS REGISTRATION: clinicaltrials.gov, NCT02137772.


Assuntos
Antivirais , Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Acetatos , Antivirais/uso terapêutico , Citomegalovirus , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/prevenção & controle , Humanos , Quinazolinas
2.
Genes Dev ; 20(8): 927-32, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618804

RESUMO

Integrins are heterodimeric adhesion receptors associated with bidirectional signaling. In vitro studies support a role for the binding of evolutionarily conserved tyrosine motifs (NPxY) in the beta integrin cytoplasmic tail to phosphotyrosine-binding (PTB) domain-containing proteins, an interaction proposed to be dynamically regulated by tyrosine phosphorylation. Here we show that replacement of both beta1 integrin cytoplasmic tyrosines with alanines, resulting in the loss of all PTB domain interaction, causes complete loss of beta1 integrin function in vivo. In contrast, replacement of beta1 integrin cytoplasmic tyrosines with phenylalanines, a mutation that prevents tyrosine phosphorylation, conserves in vivo integrin function. These results have important implications for the molecular mechanism and regulation of integrin function.


Assuntos
Citoplasma/metabolismo , Integrina beta1/fisiologia , Tirosina/fisiologia , Motivos de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Integrina beta1/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação
3.
Blood ; 106(4): 1268-77, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15886326

RESUMO

The roles of the 2 major platelet-collagen receptors, glycoprotein VI (GPVI) and integrin alpha2beta1, have been intensely investigated using a variety of methods over the past decade. In the present study, we have used pharmacologic and genetic approaches to study human and mouse platelet adhesion to collagen under flow conditions. Our studies demonstrate that both GPVI and integrin alpha2beta1 play significant roles for platelet adhesion to collagen under flow and that the loss of both receptors completely ablates this response. Intracellular signaling mediated by the cytoplasmic adaptor Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) but not by the transmembrane adaptor linker for activation of T cells (LAT) is critical for platelet adhesion to collagen under flow. In addition, reduced GPVI receptor density results in severe defects in platelet adhesion to collagen under flow. Defective adhesion to collagen under flow is associated with prolonged tail-bleeding times in mice lacking one or both collagen receptors. These studies establish platelet-collagen responses under physiologic flow as the consequence of a close partnership between 2 structurally distinct receptors and suggest that both receptors play significant hemostatic roles in vivo.


Assuntos
Colágeno/farmacologia , Integrina alfa2beta1/fisiologia , Adesividade Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Coagulação Sanguínea , Humanos , Integrina alfa2beta1/deficiência , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Perfusão , Fosfoproteínas/fisiologia , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/deficiência , Transdução de Sinais
4.
Ann Biomed Eng ; 32(7): 970-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15298434

RESUMO

Glycoprotein VI (GPVI) is a platelet receptor that directly binds collagen. It has been shown by expressing GPVI in rat basophilic leukemia (RBL-2H3) cells that GPVI mediates adhesion to type I collagen under static conditions. However, the ability of GPVI to secure adhesion to collagen type I under flow has not been measured. We studied the interaction of GPVI and type I collagen under hydrodynamic flow using RBL-2H3 cells transfected with the GPVI receptor. We found that GPVI-expressing RBL-2H3 cells adhere to collagen under flow, significantly more so than non-GPVI-expressing RBL-2H3 cells. Inhibition of GPVI by the 11A12 anti-GPVI antibody significantly blocks adhesion to collagen, indicating that GPVI specifically interacts with collagen. Probing the role of signaling in GPVI binding to collagen, we used mutants of GPVI and observed that signal transduction did not inhibit adhesion. To test the correlation between receptor expression and adhesion, we tested three GPVI-expressing RBL-2H3 cell lines (A, B, and C) with different levels of receptor expression. At a single shear rate, the level of adhesion increases monotonically with surface expression. The results, using this model cell line, indicate that GPVI is capable of mediating adhesion to collagen under shear, in a density-dependent fashion that is independent of GPVI signaling.


Assuntos
Colágeno Tipo I/metabolismo , Leucemia Basofílica Aguda/metabolismo , Leucemia Basofílica Aguda/patologia , Mecanotransdução Celular , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Adesão Celular , Linhagem Celular Tumoral , Leucemia Basofílica Aguda/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Ratos , Proteínas Recombinantes/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa