Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 73(15): 5336-5354, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35394522

RESUMO

Despite efforts to collect genomics and phenomics ('omics') and environmental data, spatiotemporal availability and access to digital resources still limit our ability to predict plants' response to changes in climate. Our goal is to quantify the improvement in the predictability of maize yields by enhancing climate data. Large-scale experiments such as the Genomes to Fields (G2F) are an opportunity to provide access to 'omics' and climate data. Here, the objectives are to: (i) improve the G2F 'omics' and environmental database by reducing the gaps of climate data using deep neural networks; (ii) estimate the contribution of climate and genetic database enhancement to the predictability of maize yields via environmental covariance structures in genotype by environment (G×E) modeling; and (iii) quantify the predictability of yields resulting from the enhancement of climate data, the implementation of the G×E model, and the application of three trial selection schemes (i.e. randomization, ranking, and precipitation gradient). The results show a 12.1% increase in predictability due to climate and 'omics' database enhancement. The consequent enhancement of covariance structures evidenced in all train-test schemes indicated an increase in maize yield predictability. The largest improvement is observed in the 'random-based' approach, which adds environmental variability to the model.


Assuntos
Aprendizado Profundo , Zea mays , Agricultura/métodos , Clima , Mudança Climática , Zea mays/genética
2.
Environ Monit Assess ; 189(7): 359, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28660541

RESUMO

Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010-2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010-2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7-5.2 and 1.9-9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9-7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper's methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.


Assuntos
Mudança Climática , Monitoramento Ambiental , Hidrologia , Irã (Geográfico) , Temperatura , Recursos Hídricos , Áreas Alagadas
3.
Sci Rep ; 11(1): 16183, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376771

RESUMO

The Muskingum model is a popular hydrologic flood routing technique; however, the accurate estimation of model parameters challenges the effective, precise, and rapid-response operation of flood routing. Evolutionary and metaheuristic optimization algorithms (EMOAs) are well suited for parameter estimation task associated with a wide range of complex models including the nonlinear Muskingum model. However, more proficient frameworks requiring less computational effort are substantially advantageous. Among the EMOAs teaching-learning-based optimization (TLBO) is a relatively new, parameter-free, and efficient metaheuristic optimization algorithm, inspired by the teacher-student interactions in a classroom to upgrade the overall knowledge of a topic through a teaching-learning procedure. The novelty of this study originates from (1) coupling TLBO and the nonlinear Muskingum routing model to estimate the Muskingum parameters by outflow predictability enhancement, and (2) evaluating a parameter-free algorithm's functionality and accuracy involving complex Muskingum model's parameter determination. TLBO, unlike previous EMOAs linked to the Muskingum model, is free of algorithmic parameters which makes it ideal for prediction without optimizing EMOAs parameters. The hypothesis herein entertained is that TLBO is effective in estimating the nonlinear Muskingum parameters efficiently and accurately. This hypothesis is evaluated with two popular benchmark examples, the Wilson and Wye River case studies. The results show the excellent performance of the "TLBO-Muskingum" for estimating accurately the Muskingum parameters based on the Nash-Sutcliffe Efficiency (NSE) to evaluate the TLBO's predictive skill using benchmark problems. The NSE index is calculated 0.99 and 0.94 for the Wilson and Wye River benchmarks, respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa