Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 5058-5067, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445590

RESUMO

In new buildings, nonoccupant VOC emissions are initially high but typically decrease within months. Increased ventilation is commonly used to improve indoor air quality, assuming it speeds up VOC off-gassing from materials. However, previous research presents inconsistent results. This review introduces a simplified analytical model to understand the ventilation-emission relationship. By combining factors such as diffusivity, emitting area, and time, the model suggests the existence of a theoretical ventilation threshold beyond which enhanced ventilation has no further influence on emission rates. A threshold of approximately 0.13 L s-1 m-2 emitting area has been found for various VOCs documented in the existing literature, with which the conflicting results are explained. It is also shown that the threshold remains notably consistent across different boundary conditions and model resolutions, indicating its suitability for real-world applications.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Ventilação , Poluição do Ar em Ambientes Fechados/análise , Gases , Poluentes Atmosféricos/análise , Monitoramento Ambiental
2.
Gels ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547288

RESUMO

Aerogel-based coating mortars are energy-efficient composites with thermal conductivities of 30-50 mW/(m·K). They are useful when retrofitting uninsulated building envelopes, particularly in listed masonry buildings, as shown in studies. Meanwhile, the long-term reliability of their hygrothermal properties, typically declared after a single laboratory measurement, is not confirmed. To illustrate the latter and by combining experimental and numerical methods, this study shows that (1) the capillary water absorptivity of a commercially available aerogel-based coating mortar increases after repeated drying and wetting cycles, and (2) leads to a higher moisture content in a masonry wall. After the third cycle, the measured water absorption was more than five times higher than after the first one. Based on numerical simulations, the increasing capillary water absorptivity results in 36% higher relative humidity in the wall if the aerogel-based coating mortar is applied externally and exposed to driving rain. Future research should investigate the reasons behind the observed deviations in the capillary water absorptivity and whether it applies to other types of aerogel-based coating mortars.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa