Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 86: 221-230, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28322894

RESUMO

The nonclinical safety evaluation of therapeutic drug candidates is commonly conducted in two species (rodent and non-rodent) in keeping with international health authority guidance. Biologic drugs typically have restricted species cross-reactivity, necessitating the evaluation of safety in non-human primates and thus limiting the utility of lower order species. Safety studies of cross-reactive ocular biologic drug candidates have been conducted in rabbits as a second toxicology species, despite the fact that rabbits are not a rodent species. Such studies are often confounded by the development of anti-drug antibodies and severe ocular inflammation, the latter requiring studies to be terminated prematurely for animal welfare reasons. Notably, these confounding factors preclude the interpretation of safety. Nonclinical toxicology programs should be designed with consideration of ethical animal use and 3Rs principles (Replacement, Reduction and Refinement). The experience of several pharmaceutical sponsors, demonstrating that toxicology studies of ocular (intravitreal and topical ocular) biologic drug candidates in the rabbit are of limited interpretive value, calls into question the utility of such studies in this species and indicates that such studies should not be conducted.


Assuntos
Produtos Biológicos/efeitos adversos , Avaliação Pré-Clínica de Medicamentos/métodos , Oftalmopatias/imunologia , Coelhos , Animais , Olho/imunologia , Inflamação/imunologia , Especificidade da Espécie
3.
Sci Transl Med ; 13(579)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536278

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Cães , Camundongos , Modelos Animais , Ratos , Sorogrupo
4.
ILAR J ; 49(2): 179-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18323580

RESUMO

Preclinical safety studies that are required for the marketing approval of a pharmaceutical include single and repeat dose studies in rodent and nonrodent species. The use of nonhuman primates (NHPs), primarily macaques, as the nonrodent species has increased in recent years, in part due to the increase in development of biopharmaceuticals and immunomodulatory agents. Depending on the source of the macaques, they may vary in genetic background, normal flora, and/or the incidence of preexisting pathogens and inflammatory conditions. As the use of alternative sources of macaques rises to meet the increased demand for these animals in biomedical research, the toxicologic pathologist should be well versed in NHP pathology to adequately assess potential drug-related effects in the context of these variations. Such knowledge is particularly important in studies involving immunomodulatory drugs as the toxicologic pathologist should anticipate which type(s) of infections are most likely to arise depending on which arm of the immune system is modulated. The purpose of this review is to discuss the immunosuppressive (e.g., simian type D retrovirus, simian immunodeficiency virus) and opportunistic viruses (e.g., cytomegalovirus, adenovirus, simian virus 40, rhesus rhadinovirus, and lymphocryptovirus), primary and opportunistic bacteria (e.g., Campylobacter spp., Shigella flexneri, Yersinia enterocolitica, Moraxella catarrhalis, Mycobacterium avium complex, enteropathogenic Escherichia coli), and parasites (e.g., Plasmodium spp., Schistosoma spp., Strongyloides fulleborni) that have had the most profound impact on the interpretation of drug safety studies and/or that may reemerge as alternative sources of NHPs are used for drug safety studies.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Desenho de Fármacos , Animais , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Macaca/microbiologia , Macaca/parasitologia , Mycobacterium/efeitos dos fármacos , Mycobacterium/crescimento & desenvolvimento , Infecções Oportunistas/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Plasmodium/crescimento & desenvolvimento , Primatas , Infecções por Retroviridae/tratamento farmacológico , Infecções por Retroviridae/virologia
5.
Comp Med ; 57(1): 125-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17348301

RESUMO

We noted naturally occurring infection with Clostridium piliforme (Tyzzer's disease) in 2 captive-reared cotton-top tamarins (Saguinus oedipus). Spontaneous Tyzzer's disease has been reported in multiple species of laboratory, domestic, and wild animals but is extremely rare in humans and nonhuman primates. Distinct from idiopathic colitis, which is common in cotton-top tamarins, these 2 tamarins had severe, transmural, necrotizing typhlocolitis accompanied by myocarditis and hepatitis. Abundant bacteria compatible with C. piliforme, the etiologic agent of Tyzzer's disease, were present adjacent to lesions in the cecum-colon, liver, and heart. Therefore, colitis caused by C. piliforme, although rare, should be included as a differential diagnosis in cotton-top tamarins and as a cause of postnatal mortality in this species.


Assuntos
Animais de Laboratório/microbiologia , Infecções por Clostridium/veterinária , Clostridium , Colite/veterinária , Doenças dos Macacos/microbiologia , Doenças dos Macacos/patologia , Saguinus , Animais , Ceco/microbiologia , Ceco/patologia , Infecções por Clostridium/patologia , Colite/patologia , Colo/microbiologia , Colo/patologia , Coração/microbiologia , Fígado/microbiologia , Fígado/patologia
6.
J Med Chem ; 48(6): 2248-50, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15771468

RESUMO

Muraglitazar/BMS-298585 (2) has been identified as a non-thiazolidinedione PPAR alpha/gamma dual agonist that shows potent activity in vitro at human PPARalpha (EC(50) = 320 nM) and PPARgamma(EC(50) = 110 nM). Compound 2 shows excellent efficacy for lowering glucose, insulin, triglycerides, and free fatty acids in genetically obese, severely diabetic db/db mice and has a favorable ADME profile. Compound 2 is currently in clinical development for the treatment of type 2 diabetes and dyslipidemia.


Assuntos
Glicina/análogos & derivados , Glicina/síntese química , Hipoglicemiantes/síntese química , Hipolipemiantes/síntese química , Oxazóis/síntese química , PPAR alfa/agonistas , PPAR gama/agonistas , Adipócitos/citologia , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos/sangue , Glicina/química , Glicina/farmacologia , Humanos , Hiperlipidemias/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacocinética , Hipolipemiantes/farmacologia , Insulina/sangue , Masculino , Camundongos , Camundongos Obesos , Oxazóis/química , Oxazóis/farmacologia , Ativação Transcricional , Triglicerídeos/sangue
7.
J Immunotoxicol ; 7(2): 79-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19909217

RESUMO

The increased demand for non-human primates (NHPs) in biomedical research has resulted in alternative sources of animals being used, which has allowed for importation of animals with varying background incidences of bacterial, viral, parasitic, and fungal pathogens. This can be of minimal consequence when animals from different sources are kept isolated. However, when NHPs from different sources with varying incidences of primary and opportunistic pathogens are mixed, there can be a rapid spread of these pathogens and an increase in the seroconversion of susceptible animals. If this process occurs during the conduct of a study, interpretation of that study can be confounded. Furthermore, NHPs imported from areas enzootic for pathogens such as Plasmodium or with high incidences of human diseases such as measles and tuberculosis can introduce diseases that can be a threat to colony health, have zoonotic risk, and can severely impact study outcome. Thus, knowledge of the common primary and opportunistic NHP infections, as well as reemerging pathogens, enables the toxicologist to use information on disease status for pre-study animal selection and intelligent study design. This is particularly important when immunomodulatory compounds are being investigated. Moreover, the toxicologic pathologist well versed in the common spontaneous infections, opportunistic pathogens, and background lesions in NHPs is able to assess possible drug-related effects in drug safety studies. This review identifies the common primary and opportunistic pathogens, as well as newly emerging infections of NHPs, that can directly or indirectly affect colony health and the interpretation of drug safety studies.


Assuntos
Doenças Transmissíveis/veterinária , Macaca fascicularis/microbiologia , Doenças dos Macacos/microbiologia , Infecções Oportunistas/veterinária , Zoonoses/microbiologia , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Patógenos Transmitidos pelo Sangue , Doenças Transmissíveis/microbiologia , Micoses/microbiologia , Micoses/veterinária , Infecções Oportunistas/microbiologia , Doenças Parasitárias em Animais/microbiologia , Testes de Toxicidade , Viroses/veterinária
8.
Blood ; 107(11): 4266-73, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16439676

RESUMO

The transcription factor NF-kappaB plays a central role in regulating inflammation and apoptosis, making it a compelling target for drug development. We identified a small molecule inhibitor (ML120B) that specifically inhibits IKKbeta, an Ikappa-B kinase that regulates NF-kappaB. IKKbeta and NF-kappaB are required in vivo for prevention of TNFalpha-mediated apoptosis. ML120B sensitized mouse bone marrow progenitors and granulocytes, but not mature B cells to TNFalpha killing in vitro, and induced apoptosis in vivo in the bone marrow and spleen within 6 hours of a single oral dose. In vivo inhibition of IKKbeta with ML120B resulted in depletion of thymocytes and B cells in all stages of development in the bone marrow but did not deplete granulocytes. TNF receptor-deficient mouse thymocytes and B cells were resistant to ML120B-induced depletion in vivo. Surprisingly, surviving bone marrow granulocytes expressed TNFR1 and TNFR2 after dosing in vivo with ML120B. Our results show that inhibition of IKKbeta with a small molecule in vivo leads to rapid TNF-dependent depletion of T and B cells. This observation has several implications for potential use of IKKbeta inhibitors for the treatment of inflammatory disease and cancer.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Depleção Linfocítica/métodos , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Receptores do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Receptores Chamariz do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/farmacologia
9.
J Virol ; 76(11): 5797-802, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992008

RESUMO

Inflammatory cytokines are believed to play an important role in the pathogenesis of human immunodeficiency virus type 1-associated encephalitis. To examine this in the simian immunodeficiency virus (SIV)-infected macaque model of neuroAIDS, inflammatory cytokine gene expression was evaluated in the brains of macaques infected with pathogenic SIV(mac251) by reverse transcriptase PCR. Interleukin-1 beta was readily detected in the brains of all animals evaluated, regardless of infection status or duration of infection. Tumor necrosis factor alpha (TNF-alpha) and gamma interferon (IFN-gamma) transcripts were undetectable in the brains of uninfected control animals but were upregulated at 7 and 14 days postinoculation. At the terminal stage of infection, TNF-alpha and IFN-gamma transcripts were coexpressed in the brains of four of five animals with SIV encephalitis (SIVE). Within an encephalitic brain, TNF-alpha and IFN-gamma transcripts were detected in six of seven regions with histologic evidence of SIVE, suggesting a direct relationship between neuropathology and altered cytokine gene expression. With combined fluorescent in situ hybridization and immunofluorescence, TNF-alpha-expressing cells were frequently identified as CD68-positive macrophages within perivascular lesions. These observations provide evidence that cytokines produced by activated inflammatory macrophages are an important element in the pathogenesis of SIVE.


Assuntos
Sistema Nervoso Central/imunologia , Encefalite Viral/imunologia , Expressão Gênica , Interferon gama/genética , Interleucina-1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Fator de Necrose Tumoral alfa/genética , Animais , Encéfalo/imunologia , Encéfalo/patologia , Sistema Nervoso Central/patologia , Encefalite Viral/patologia , Macaca mulatta , Estudos Retrospectivos , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa