Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(7): 3269-3292, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265441

RESUMO

Presently, the rapid depletion of resources and drastic climate change highlight the importance of sustainable development. In this case, nanochitin derived from chitin, the second most abundant renewable polymer in the world, possesses numerous advantages, including toughness, easy processability and biodegradability. Furthermore, it exhibits better dispersibility in various solvents and higher reactivity than chitin owing to its increased surface area to volume ratio. Additionally, it is the only natural polysaccharide that contains nitrogen. Therefore, it is valuable to further develop this innovative technology. This review summarizes the recent developments in nanochitin and specifically identifies sustainable strategies for its preparation. Additionally, the different biomass sources that can be exploited for the extraction of nanochitin are highlighted. More importantly, the life cycle assessment of nanochitin preparation is discussed, followed by its applications in advanced manufacturing and perspectives on the valorization of chitin waste.

2.
Adv Healthc Mater ; 12(19): e2300024, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36964966

RESUMO

Lignin is a nontoxic and biocompatible biopolymer with many promising characteristics, including a high tensile strength and antioxidant properties. This natural polymer can be processed through several chemical methods and modified into lignin nanomaterials for potential biomedical applications. This review summarizes the latest developments in nanolignin (NL)-based biomaterials for cancer therapy; various NL applications related to cancer therapy are considered, including drug and gene delivery, biosensing, bioimaging, and tissue engineering. The manuscript also outlines the potential use of these materials to improve the therapeutic potency of chemotherapeutic drugs by decreasing their dose and reducing their adverse effects. Due to its high surface area-to-volume ratio and the easy modification of its chemical components, NL could serve as an appropriate matrix for the binding and controlled release of various pharmaceutical agents. Moreover, the challenges in the utilization of NL-based materials for cancer therapy are discussed, along with the prospects of advances in such nanomaterials for medical research applications.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Lignina/uso terapêutico , Lignina/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico
3.
Chem Asian J ; 18(24): e202300842, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37903723

RESUMO

In response to the pressing issue of water pollution caused by heavy metal ions, there is a growing demand for green adsorbents that can effectively remove these contaminants while being easy to separate and regenerate. A novel magnetic composite was synthesized by bonding amino-functionalized Fe3 O4 -SiO2 magnetic particles (MNP-NH2 ) to polyethyleneimine (PEI)-grafted cellulose nanofibers (CNF). The modification of CNF with PEI through a peptidic coupling reaction resulted in the uniform dispersion and strong attachment of MNP-NH2 particles (286.7 nm) onto the PEI-CNF surface. This composite exhibited exceptional adsorption capabilities for heavy metals, achieving 16.73 mg/g for Pb, 16.12 mg/g for Cu, and 12.53 mg/g for Co. These remarkable adsorption capacities are attributed to the complex interactions between the metal ions and the amino, carboxyl, and hydroxyl groups on the surface of PEI-CNF-MNP. The introduction of PEI significantly enhanced the adsorption capacities, and the adsorption sequence (Pb(II)>Cu(II)>Co(II)) can be explained by differences in ionic radius and surface complexation strength. Langmuir isotherm and pseudo-second-order kinetic models described the adsorption process, while Na2 EDTA was proved effective for desorption with high recovery rates. This magnetic composite holds promise for treating heavy metal-contaminated wastewater due to its impressive performance.

4.
Chem Asian J ; 17(21): e202200671, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36002402

RESUMO

There has been increasing exploration of the development and production of biodegradable polymers in response to issues with petrol-based polymers and their impact on the environment. Here we report a new approach to synthesize a natural nanogel from lignin and nanocellulose. First, lignin nanobeads were synthesized by a solvent-shifting method, which showed a spherical shape with a diameter of 159.7 nm. Then the lignin nanobeads were incorporated into a nanocellulose network to form the lignin/cellulose nanogels. The nanocellulose fibrils (CNF-C) nanogels reveal a higher storage modulus than the nanocellulose crystal (CNC-C) ones due to the denser network with self-entanglement of longer cellulose chains. The presence of lignin nanobeads in the nanogels helped to increase the viscoelasticity of the nanogels. This work highlights that the new kinds of green nanogels could be potentially utilized in a variety of biomedical applications such as drug delivery and wound dressing.


Assuntos
Celulose , Lignina , Lignina/química , Celulose/química , Nanogéis , Sistemas de Liberação de Medicamentos , Polímeros
5.
Methods Mol Biol ; 2211: 171-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33336277

RESUMO

Polysaccharides are excellent candidates for drug delivery applications as they are available in abundance from natural sources. Polysaccharides such as starch, cellulose, lignin, chitosan, alginate, and tragacanth gum are used to make hydrogels beads. Hydrogels beads are three-dimensional, cross-linked networks of hydrophilic polymers formed in spherical shape and sized in the range of 0.5-1.0 mm of diameter. Beads are formed by various cross-linking methods such as chemical and irradiation methods. Natural polymer-based hydrogels are biocompatible and biodegradable and have inherently low immunogenicity, which makes them suitable for physiological drug delivery approaches. The cross-linked polysaccharide-based hydrogels are environment-sensitive polymers that can potentially be used for the development of "smart" delivery systems, which are capable of control release of the encapsulated drug at a targeted colon site. This topic focuses on various aspects of fabricating and optimizing the cross-linking of polysaccharides, either by a single polysaccharide or mixtures and also natural-synthetic hybrids to produce polymer-based hydrogel vehicles for colon-targeted drug delivery.


Assuntos
Produtos Biológicos/química , Colo/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Polímeros/química , Alumínio/química , Fenômenos Químicos , Química Farmacêutica , Reagentes de Ligações Cruzadas/química , Emulsões , Concentração de Íons de Hidrogênio , Terapia de Alvo Molecular , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa