Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2357062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835629

RESUMO

Affordable and environmentally friendly electrochemically active raw energy storage materials are in high demand to switch to mass-scale renewable energy. One particularly promising avenue is the feasibility of utilizing food waste-derived nanoporous carbon. This material holds significance due to its widespread availability, affordability, ease of processing, and, notably, its cost-free nature. Over the years, various strategies have been developed to convert different food wastes into nanoporous carbon materials with enhanced electrochemical properties. The electrochemical performance of these materials is influenced by both intrinsic factors, such as the composition of elements derived from the original food sources and recipes, and extrinsic factors, including the conditions during pyrolysis and activation. While current efforts are dedicated to optimizing process parameters to achieve superior performance in electrochemical energy storage devices, it is timely to take stock of the current state of research in this emerging field. This review provides a comprehensive overview of recent developments in the fabrication and surface characterisation of porous carbons from different food wastes. A special focus is given on the applications of these food waste derived porous carbons for energy storage applications including batteries and supercapacitors.


This review compiles very recent literature on the synthesis of porous carbon from food waste biomass and their efficient utilisation as electrode material for energy storage applications in supercapacitor devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa