Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Microb Pathog ; 189: 106568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354988

RESUMO

Biosynthesized gold nanoparticles (AuNPs) are highly attracted as a biocompatible nanodrug to treat various diseased conditions in humans. In this study, phytochemical tannic acid-mediated AuNPs (TA-AuNPs) are successfully synthesized and tested for antibacterial and antibiofilm activity against dental biofilm-forming Streptococcus mutans biofilm. The synthesized TA-AuNPs are appeared as spherical in shape with an average size of 19 nm. The antibacterial potential of TA-AuNPs was evaluated using ZOI and MIC measurements; while, antibiofilm efficacy was measured by checking the eradication of preformed biofilm on the tooth model. The ZOI and MIC values for TA-AuNPs are 25 mm in diameter and 4 µg/mL, respectively. The MTT assay, CLSM, and SEM results demonstrate that the preformed S. mutans biofilm is completely eradicated at 4xMIC (16 µg/mL) of TA-AuNPs. Finally, the present study reveals that the synthesized TA-AuNPs might be a great therapeutic drug to treat dental biofilm-forming bacterium S. mutans.


Assuntos
Cárie Dentária , Nanopartículas Metálicas , Polifenóis , Humanos , Ouro/farmacologia , Streptococcus mutans , Antibacterianos/farmacologia , Biofilmes , Cárie Dentária/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Microb Pathog ; 185: 106453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977482

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that form biofilms in chronic wounds and is difficult to treat with standard treatment methods. In the present study, flavonoid quercetin-mediated CuONPs (Que-CuONPs) were successfully synthesized and incorporated in the electrospun polycaprolactone (Que-CuONPs-PCL) nanofibrous membrane to eradicate the burn wound infection causing P. aeruginosa biofilm. The fabricated scaffold Que-CuONPs-PCL was characterized using HR-SEM, EDX, XRD, and FTIR. The synthesized Que-CuONPs appeared as spherical in shape with the average size of 36 nm. The crystallite size of the synthesized CuONPs was calculated as 23 nm. Antibacterial activity results shows that the ZOI and MIC of Que-CuONPs against P. aeruginosa was found to be 20 mm and 5 µg/mL, respectively. Antibiofilm assay results indicate the pre-formed P. aeruginosa biofilm was completely eradicated by Que-CuONPs at 8-MIC. The Que-CuONPs-PCL nanofibrous scaffolds exhibits less cytotoxic effects on mouse fibroblast (L929) cells. Finally, this study highlights the fabricated Que-CuONPs-PCL nanofibrous scaffolds exhibits an excellent antibiofilm effect against P. aeruginosa biofilm with a great biocompatibility.


Assuntos
Nanopartículas Metálicas , Nanofibras , Animais , Camundongos , Pseudomonas aeruginosa , Quercetina/farmacologia , Cobre/farmacologia , Antibacterianos/farmacologia , Biofilmes , Óxidos
3.
Crit Rev Food Sci Nutr ; 63(31): 10928-10946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35648055

RESUMO

Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.


Assuntos
Ficoeritrina , Rodófitas , Promoção da Saúde , Alimentos
4.
Environ Res ; 214(Pt 2): 113831, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35841973

RESUMO

The current study presents a viable and straightforward method for synthesizing titanium lanthanum three oxide nanoparticles (TiLa) and their decoration onto the ferrous graphene oxide sheets to produce FeGO-TiLa as efficient magnetic adsorbent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and vibration sample magnetometer (VSM) were used to evaluate the physical and chemical properties of the produced nanocomposites. The FeGO-TiLa was used to enhance the removal of lead ions from aqueous solution. The FeGO-TiLa nanocomposite exhibited a much higher removal efficiency (93%) for lead ions than pure TiLa nanoparticles (81%) and magnetic graphene oxide (74%). The influence of FeGO-TiLa dosage, contact time, solution pH, solution temperature, and starting quantity on the lead ions was evaluated and adjusted. The investigations demonstrated that a pH 6 with 40 mg adsorbent resulted in >91% removal of lead ions at ambient temperature after 120 min. Isotherm models were used to analyze experimental results, and Langmuir model fitted the data well as compared Freundlich model with a maximum adsorption capacity of 109.89 mg g-1. Kinetic and studies are performed the lead adsorption over FeGO-TiLa follow pseudo-second-order rate. Langmuir and Free energy suggested the lead ions uptake with FeGO-TiLa was monolayer and physical adsorption mechnaism, respectively. Finally, the FeGO-TiLa nanocompoiste can be used as an alternative adsorbent for water remediation.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Grafite , Concentração de Íons de Hidrogênio , Íons , Cinética , Lantânio , Chumbo , Fenômenos Magnéticos , Nanocompostos/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio , Água , Poluentes Químicos da Água/análise
5.
Phys Chem Chem Phys ; 23(14): 8489-8499, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876012

RESUMO

In the satisfactory design and synthesis of high-performance nonlinear optical (NLO) materials, for meeting the rapidly expanding demands of optoelectronic devices, a deeper understanding of the relationship between the structures and NLO properties has become a key issue. Herein, five novel mislinked expanded hexaphyrins with different connections of pyrrole units are selected to study the relationship between the structures and NLO properties. These five mislinked expanded hexaphyrins are neo-fused, neo-confused hexaphyrins, singly, doubly, and triply N-confused hexaphyrins. From theoretical results, the order of the static first hyperpolarizability (ß0) values is found to be: neo-fused hexaphyrin (ß0 = 4163 a.u.) < neo-confused hexaphyrin (ß0 = 5494 a.u.) < singly N-confused hexaphyrin (ß0 = 6510 a.u.) < doubly N-confused hexaphyrin (ß0 = 15 130 a.u.) < triply N-confused hexaphyrin (ß0 = 26 095 a.u.). Furthermore, ß0 values of the doubly and triply N-confused hexaphyrins are improved 2.1 and 3.7 times over that of their usual parent hexaphyrin (ß0 = 7120 a.u.), respectively. It is worth noting that increasing mislinked connection numbers and changing mislinked connection ways of the pyrrole units in these mislinked expanded hexaphyrins plays a crucial role in the tune of their second-order NLO responses.

6.
J Phys Chem A ; 124(5): 955-965, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31971389

RESUMO

Materials with outstanding nonlinear optical (NLO) response exhibit excellent prospects in electrooptic devices. Thus, it is essential to find a high-performance NLO material to meet the growing demand for high-speed data transmission. In this study, theoretical investigations on the second order NLO properties of the novel expanded mislinked thia-norhexaphyrin, sulfur-free pentaphyrin, and their substituted derivatives were performed using density functional theory. Theoretical calculations display that the approximate planar structures of sulfur-free pentaphyrin embedded with two five-membered rings exhibits a remarkable NLO response and holds large dipolar contribution (ΦJ=1 = 63.5%) to the first hyperpolarizability among four parent expanded mislinked porphyrins. The static first hyperpolarizability values of these expanded porphyrins were found to range from 3490 to 14 229 au. In addition, the second order NLO response of these porphyrins has greatly improved except for minority electron-releasing- and electron-withdrawing-group substituted cases, and the static first hyperpolarizability value has increased to 47 950 au after installing the donor and acceptor groups. Unambiguous evidence reveals that expanded mislinked porphyrin can serve as a potential candidate for NLO materials.

7.
Trends Food Sci Technol ; 105: 17-42, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901176

RESUMO

BACKGROUND: Insects are a living resource used for human nutrition, medicine, and industry. Several potential sources of proteins, peptides, and biopolymers, such as silk, chitin, and chitosan are utilized in industry and for biotechnology applications. Chitosan is an amino-polysaccharide derivative of chitin that consists of linear amino polysaccharides with d-glucosamine and N-acetyl-d-glucosamine units. Currently, the chief commercial sources of chitin and chitosan are crustacean shells that accumulate as a major waste product from the marine food industry. Existing chitin resources have some natural challenges, including insufficient supplies, seasonal availability, and environmental pollution. As an alternative, insects could be utilized as unconventional but feasible sources of chitin and chitosan. SCOPE AND APPROACH: This review focuses on the recent sources of insect chitin and chitosan, particularly from the Lepidoptera, Coleoptera, Orthoptera, Hymenoptera, Diptera, Hemiptera, Dictyoptera, and Odonata orders. In addition, the extraction methods and physicochemical characteristics are discussed. Insect chitin and chitosan have numerous biological activities and could be used for food, biomedical, and industrial applications. KEY FINDINGS AND CONCLUSIONS: Recently, the invasive and harmful effects of insect species causing severe damage in agricultural crops has led to great economic losses globally. These dangerous species serve as potential sources of chitin and are underutilized worldwide. The conclusion of the present study provides better insight into the conversion of insect waste-derived chitin into value-added products as an alternative chitin source to address food security related challenges.

8.
Sensors (Basel) ; 19(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108985

RESUMO

A copper sulfide nanoflakes-decorated carbon nanofragments-modified glassy carbon electrode (CuS-CNF/GCE) was fabricated for the electrocatalytic differentiation and determination of hydroquinone (HQ) and catechol (CC). The physicochemical properties of the CuS-CNF were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic determination of HQ and CC over the CuS-CNF/GCE was evaluated by cyclic voltammetry and differential pulse voltammetry. An excellent detection limit and sensitivity of the CuS-CNF/GCE are obtained (0.293 µM and 0.259 µM) with a sensitivity of 184 nA µM-1 cm-2 and 208 nA µM-1 cm-2 (S/N=3) for HQ and CC, respectively. In addition, the CuS-CNF/GCE shows a selective identification of HQ and CC over potential interfering metal ions (Zn2+, Na+, K+, NO3-, SO42-, Cl-) and organic compounds (ascorbic acid, glucose), and a satisfactory recovery is also obtained in the spiked water samples. These results suggest that the CuS-CNF/GCE can be used as an efficient electrochemical sensor for the simultaneous determination of co-existing environmental pollutants such as HQ and CC in water environments with high selectivity and acceptable reproducibility.

10.
Small ; 13(47)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29076648

RESUMO

Metal-organic frameworks (MOFs) are very promising self-sacrificing templates for the large-scale fabrication of new functional materials owing to their versatile functionalities and tunable porosities. Most conventional metal oxide electrodes derived from MOFs are limited by the low abundance of incorporated metal elements. This study reports a new strategy for the synthesis of multicomponent active metal oxides by the pyrolysis of polymetallic MOF precursors. A hollow N-doped carbon-coated ZnO/ZnCo2 O4 /CuCo2 O4 nanohybrid is prepared by the thermal annealing of a polymetallic MOF with ammonium bicarbonate as a pore-forming agent. This is the first report on the rational design and preparation of a hybrid composed of three active metal oxide components originating from MOF precursors. Interestingly, as a lithium-ion battery anode, the developed electrode delivers a reversible capacity of 1742 mAh g-1 after 500 cycles at a current density of 0.3 mA g-1 . Furthermore, the material shows large storage capacities (1009 and 667 mAh g-1 ), even at high current flow (3 and 10 A g-1 ). The remarkable high-rate capability and outstanding long-life cycling stability of the multidoped metal oxide benefits from the carbon-coated integrated nanostructure with a hollow interior and the three active metal oxide components.

11.
Inorg Chem ; 56(16): 9966-9972, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777588

RESUMO

By application of newly designed ligand 5-(3-(pyridin-3-yl)benzamido)isophthalic acid (H2PBI) to react with Mn(NO3)2 under solvothermal conditions, a 2-fold interpenetrated Mn-based metal-organic framework (Mn-PBI) with rutile-type topology has been obtained. When treated as a precursor by pyrolysis of Mn-PBI at 500 °C, mesoporous MnO/C-N nanostructures were prepared and treated as an lithium-ion battery anode. The MnO/C-N manifests good capacity of approximately 1085 mAh g-1 after 100 cycles together with superior cyclic stability and remarkable rate capacity, which is supposed to benefit from a large accessible specific area and unique nanostructures. The remarkable performances suggest promising application as an advanced anode material.

12.
Bioprocess Biosyst Eng ; 40(1): 85-97, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27663440

RESUMO

In this study, a newly isolated ascomycete fungus Trichoderma lixii F21 was explored to bioremediate the polar [Alizarin Red S (ARS)] and non-polar [Quinizarine Green SS (QGSS)] anthraquinone dyes. The bioremediation of ARS and QGSS by T. lixii F21 was found to be 77.78 and 98.31 %, respectively, via biosorption and enzymatic processes within 7 days of incubation. The maximum biosorption (ARS = 33.7 % and QGSS = 74.7 %) and enzymatic biodegradation (ARS = 44.1 % and QGSS = 23.6 %) were observed at pH 4 and 27 °C in the presence of glucose and yeast extract. The laccase and catechol 1,2-dioxygenase produced by T. lixii F21 were involved in the molecular conversions of ARS and QGSS to phenolic and carboxylic acid compounds, without the formation of toxic aromatic amines. This study suggests that T. lixii F21 may be a good candidate for the bioremediation of industrial effluents contaminated with anthraquinone dyes.


Assuntos
Antraquinonas/metabolismo , Corantes/metabolismo , Trichoderma/metabolismo , Biodegradação Ambiental
13.
Bioprocess Biosyst Eng ; 40(2): 191-200, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27757535

RESUMO

In this study, laccase was immobilized on nylon 6,6/Fe3+ composite (NFC) nanofibrous membrane and used for the detoxification of 3,3'-dimethoxybenzidine (DMOB). The average size and tensile strength of the NFC membrane were found to be 60-80 nm (diameter) and 2.70 MPa, respectively. The FTIR results confirm that the amine (N-H) group of laccase was attached with Fe3+ particles and the carbonyl (C=O) group of NFC membrane via hydrogen bonding. The half-life of the laccase-NFC membrane storage stability was increased from 6 to 11 weeks and the reusability was significantly extended up to 43 cycles against ABTS oxidation. Enhanced electro-oxidation of DMOB by laccase was observed at 0.33 V and the catalytic current was found to be 30 µA. The DMOB-treated mouse fibroblast 3T3-L1 preadipocytes showed maximum (97 %) cell inhibition at 75 µM L-1 within 24 h. The cytotoxicity of DMOB was significantly decreased to 78 % after laccase treatment. This study suggests that laccase-NFC membrane might be a good candidate for emerging pollutant detoxification.


Assuntos
Caprolactama/análogos & derivados , Dianisidina , Compostos Férricos/química , Proteínas Fúngicas/química , Lacase/química , Membranas Artificiais , Nanofibras/química , Polímeros/química , Trametes/enzimologia , Células 3T3-L1 , Animais , Caprolactama/química , Dianisidina/química , Dianisidina/toxicidade , Enzimas Imobilizadas/química , Camundongos
14.
Bioprocess Biosyst Eng ; 39(4): 651-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801668

RESUMO

In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601-1595 cm(-1) correspond to C-C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 µg mL(-1). The AgNPs showed a significant reduction in the migration of MCF-7 cells.


Assuntos
Adenocarcinoma/metabolismo , Amaranthaceae/química , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata , Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Prata/química , Prata/farmacologia
15.
J Dent ; 143: 104888, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38342369

RESUMO

OBJECTIVES: Dental biofilm is one of the most prevalent diseases in humans, which is mediated by multiple microorganisms. Globally, half of the human population suffers from dental biofilm and its associated diseases. In recent trends, nano-formulated drugs are highly attractive in the treatment of dental biofilms. However, the impact of different types of nanodrugs on the dental biofilm and its associated pathogens have not been published till date. Thus, this review focuses on the recent updates, feasibility, mechanisms, limitations, and regulations of nanodrugs applications in the prevention and eradication of dental biofilm. STUDY SELECTION, DATA AND SOURCES: A systematic search was conducted in PubMed/Google Scholar/Scopus over the past five years covering the major keywords "nanodrugs, metallic nanoparticles, metal oxide nanoparticles, natural polymers, synthetic polymers, biomaterials, dental biofilm, antibiofilm mechanism, dental pathogens", are reviewed in this study. Nearly, 100 scientific articles are selected in this relevant topic published between 2019 and 2023. Data from the selected studies dealing with nanodrugs used for biofilm treatment was qualitatively analyzed. CONCLUSIONS: The nanodrugs such as silver nanoparticles, gold nanoparticles, selenium nanoparticles, zinc oxide nanoparticles, copper oxide nanoparticles, titanium oxide nanoparticles, hydroxyapatite nanoparticles and these inorganic nanoparticles incorporated polymer-based nanocomposites, organic/inorganic nanoparticles mediated antimicrobial photodynamic therapy exhibits an excellent antibacterial and antibiofilm activity towards dental pathogens. Finally, this review highlights that bioinspired nanodrugs will be very useful to control the dental biofilm and its associated diseases. CLINICAL SIGNIFICANCE: Microbial influence on the oral environment is unavoidable; therefore, curing such dental biofilms and pathogens is essential for the impactful reflection of applying biocompatible treatments. In this direction, the current review explains the demand for the nanodrug in inhibiting biofilms for the effective exploration of employing treatments.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Nanopartículas Metálicas/uso terapêutico , Ouro/farmacologia , Estudos de Viabilidade , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Óxido de Zinco/farmacologia , Biofilmes , Polímeros/farmacologia
16.
Int J Biol Macromol ; 257(Pt 2): 128550, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056737

RESUMO

Biopolymers are a naturally occurring alternative to synthetic polymers that are linked by covalent bonds, which includes cellular components such as proteins, nucleotides, lipids, and polysaccharides. Based on the extensive literature review it was found that chitosan, lignin, and cellulose were predominantly used in the energy and environmental sectors. Due to their vast array of qualities, including the adsorption, flocculation, anticoagulation, and furthermore, have made them useful for treating wastewater and pollutant removal. Chitosan and lignin have been used as a proton exchange membrane in the energy storage device of fuel cells. As these biopolymers develop strong coordination connections with metal surfaces, they act as an anticorrosive agent, which inhibiting the corrosion. Besides, there are a lot of recent developments in the application of biopolymers for energy and environmental fields. The present review provides a concise summary of recent developments in membrane-based biopolymers role in energy and environmental field. In addition, this review is drawn to a conclusion with a discussion of future trends in the real application of biopolymers in a variety of different industries, as well as the financial significance of these future trends.


Assuntos
Celulose , Quitosana , Celulose/química , Lignina/química , Quitosana/química , Biopolímeros/química , Polímeros/química
17.
Environ Technol ; 34(1-4): 139-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23530324

RESUMO

Laccase was produced from Pleurotus florida under solid-state fermentation, and the production was optimized by response surface methodology. The predicted maximum laccase production of 8.81 U g(-1) was obtained by the optimum concentration of malt extract, banana peel, wheat bran and CuSO4, which was found to be 0.69 g, 10.61 g, 10.68 g and 77.15 ppm, respectively. The validation results suggested that the laccase production was 7.96 U g(-1) in the optimized medium, which was close to the predicted value. Decolorization efficiency of P. florida laccase was evaluated against malachite green (MG). Rapid decolorization of MG dye was observed, and a dark-coloured precipitate was formed in the reaction mixture. HPLC analysis indicated that the laccase enzyme degraded MG by the demethylation process. The toxicity of MG was reduced to 67% after the treatment with laccase, which was confirmed by a phytotoxicity study.


Assuntos
Produtos Agrícolas/metabolismo , Lacase/metabolismo , Pleurotus/enzimologia , Corantes de Rosanilina/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese , Fermentação , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria
18.
Sci Total Environ ; 859(Pt 1): 160235, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36402342

RESUMO

Black soldier fly larvae (BSFL) Hermetia illucens is fastest growing and most promising insect species especially recommended to bring high-fat content as 5th generation bioenergy. The fat content can be fully optimized during the life-cycle of the BSFL through various organic dietary supplements and environmental conditions. Enriched fat can be obtained during the larval stages of the BSF. The presence of high saturated and unsaturated fatty acids in their body helps to produce 70 % of extractable oil which can be converted into biodiesel through transesterification. The first-generation biodiesel process mainly depends on catalytic transesterification, however, BSFL had 94 % of biodiesel production through non-catalytic transesterification. This increases the sustainability of producing biodiesel with less energy input in the process line. Other carbon emitting factors involved in the rearing of BSFL are less than the other biodiesel feedstocks including microalgae, cooking oil, and non-edible oil. Therefore, this review is focused on evaluating the optimum dietary source to produce fatty acid rich larvae and larval growth to accumulate C16-18 fatty acids in larger amounts from agro food waste. The process of optimization and biorefining of lipids using novel techniques have been discussed herein. The sustainability impact was evaluated from the cultivation to biodiesel conversion with greenhouse gas emissions scores in the entire life-cycle of process flow. The state-of-the-art in connecting circular bioeconomy loop in the search for bioenergy was meticulously covered.


Assuntos
Dípteros , Eliminação de Resíduos , Animais , Larva , Biocombustíveis , Alimentos , Ácidos Graxos
19.
Chemosphere ; 312(Pt 1): 137260, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400190

RESUMO

For decades, most of the developing nations have relied on chlorpyrifos for insecticidal activity in the agriculture sector. It is a common chlorinated organophosphorus pesticide that has been widely used to control insects to protect plants. This study aimed to investigate the effects of environmental characteristics such as salinity, pH, temperature, and surfactant on Hortaea sp. B15 mediated degradation of chlorpyrifos as well as enzyme activity and metabolic pathway. The highest bacterial growth (4.6 × 1016 CFU/mL) was achieved after 20 h of incubation in a 100 mg/L chlorpyrifos amended culture. The fit model and feasible way to express the chlorpyrifos biodegradation kinetics in normal condition and optimized was a first-order rate equation, with an R2 value of 0.95-0.98. The optimum pH for chlorpyrifos biodegradation was pH 9, which resulted in a high removal rate (91.1%) and a maximum total count of 3.8 × 1016 CFU/mL. Increasing the temperature over 40 °C may inhibit microbial development and biodegradation. There was no significant effect of culture salinity on degradation and bacterial growth. In the presence of non-ionic surfactant Tween 80, the maximum chlorpyrifos degradation (89.5%) and bacterial growth (3.8 × 1016 CFU/mL) was achieved. Metabolites such as 3,5,6-trichloropyridin-2-ol and 2-pyridinol were identified in the Hortaea sp. B15 mediated degradation of chlorpyrifos. According to the findings, Hortaea sp. B15 should be recommended for use in the investigation of in situ biodegradation of pesticides.


Assuntos
Clorpirifos , Praguicidas , Clorpirifos/metabolismo , Praguicidas/metabolismo , Compostos Organofosforados , Biodegradação Ambiental , Tensoativos
20.
Chemosphere ; 311(Pt 2): 137017, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377118

RESUMO

Perchlorate (ClO4-) comes under the class of contaminants called the emerging contaminants that will impact environment in the near future. A strong oxidizer by nature, perchlorate has received significant observation due to its occurrence, reactive nature, and persistence in varied environments such as surface water, groundwater, soil, and food. Perchlorate finds its use in number of industrial products ranging from missile fuel, fertilizers, and fireworks. Perchlorate exposure occurs when naturally occurring or manmade perchlorate in water or food is ingested. Perchlorate ingestion affects iodide absorption into the thyroid, thereby causing a decrease in the synthesis of thyroid hormone, a very crucial component needed for metabolism, neural development, and a number of other physiological functions in the body. Perchlorate remediation from ground water and drinking water is carried out through a series of physical-chemical techniques like ion (particle) transfer and reverse osmosis. However, the generation of waste through these processes are difficult to manage, so the need for alternative treatment methods occur. This review talks about the hybrid technologies that are currently researched and gaining momentum in the treatment of emerging contaminants, namely perchlorate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa