Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Neuroinflammation ; 18(1): 288, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893067

RESUMO

PURPOSE: While marked reductions in neural activity and mitochondrial function have been reported in Alzheimer's disease (AD), the degree of mitochondrial activity in mild cognitive impairment (MCI) or early-stage AD remains unexplored. Here, we used positron emission tomography (PET) to examine the direct relationship between mitochondrial activity (18F-BCPP-EF) and ß-amyloid (Aß) deposition (11C-PiB) in the same brains of senescence-accelerated mouse prone 10 (SAMP10) mice, an Aß-developing neuroinflammatory animal model showing accelerated senescence with deterioration in cognitive functioning similar to that in MCI. METHODS: Five- to 25-week-old SAMP10 and control SAMR1 mice, were used in the experiments. PET was used to measure the binding levels (standard uptake value ratios; SUVRs) of [18F]2-tert-butyl-4-chloro-5-2H-pyridazin-3-one (18F-BCPP-EF) for mitochondrial complex 1 availability, and 11C-PiB for Aß deposition, in the same animals, and immunohistochemistry for ATPB (an ATP synthase on the mitochondrial inner membrane) was also performed, to determine changes in mitochondrial activity in relation to amyloid burden during the early stage of cognitive impairment. RESULTS: The SUVR of 18F-BCPP-EF was significantly lower and that of 11C-PiB was higher in the 15-week-old SAMP10 mice than in the control and 5-week-old SAMP10 mice. The two parameters were found to negatively correlate with each other. The immunohistochemical analysis demonstrated temporal upregulation of ATPB levels at 15-week-old, but decreased at 25 week-old SAMP10 mice. CONCLUSION: The present results provide in vivo evidence of a decrease in mitochondrial energy production and elevated amyloidosis at an early stage in SAMP10 mice. The inverse correlation between these two phenomena suggests a concurrent change in neuronal energy failure by Aß-induced elevation of neuroinflammatory responses. Comparison of PET data with histological findings suggests that temporal increase of ATPB level may not be neurofunctionally implicated during neuropathological processes, including Aß pathology, in an animal model of early-phase AD spectrum disorder.


Assuntos
Envelhecimento/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Envelhecimento/genética , Envelhecimento/patologia , Amiloidose/genética , Amiloidose/patologia , Animais , Encéfalo/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia
2.
Clin Anat ; 34(3): 405-410, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32713009

RESUMO

INTRODUCTION: Many researchers have assumed that neurovascular compression of the facial nerve at the site covered by central myelin sheath causes hemifacial spasm. However, some cases do not correspond to this hypothesis. The aim of this study was to clarify the myelin histology in the facial nerve. MATERIALS AND METHODS: Histological analyses were conducted on 134 facial nerves from 67 cadavers. Three dimensions were measured in these sections: the length from the upper border of the medullopontine sulcus to the boundary between the central and peripheral myelin sheath along the anterior side; the length from the detachment point of the brain stem to the boundary along the posterior side; and the length of the transitional zone (TZ), known as the Obersteiner-Redlich zone. RESULTS: Of the 134 facial nerves, 41 were available for study. The length of the central myelin segment ranged from 4.62 to 12.6 mm (mean 8.06 mm; median 7.98 mm) along the anterior side and from 0.00 to 4.58 mm (mean 1.68 mm; median 1.42 mm) along the posterior side of the facial nerve, and the length of the TZ ranged from 0.00 to 2.76 mm (mean 1.51 mm; median 1.42 mm). CONCLUSIONS: In this study, the length of the central myelin segment in the facial nerve was found to be longer than that previously reported.


Assuntos
Nervo Facial/anatomia & histologia , Bainha de Mielina , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Espasmo Hemifacial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes de Compressão Nervosa/fisiopatologia
3.
Cancer Sci ; 111(7): 2620-2634, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32412154

RESUMO

Secondary lymphedema often develops after cancer surgery, and over 250 million patients suffer from this complication. A major symptom of secondary lymphedema is swelling with fibrosis, which lowers the patient's quality of life, even if cancer does not recur. Nonetheless, the pathophysiology of secondary lymphedema remains unclear, with therapeutic approaches limited to physical or surgical therapy. There is no effective pharmacological therapy for secondary lymphedema. Notably, the lack of animal models that accurately mimic human secondary lymphedema has hindered pathophysiological investigations of the disease. Here, we developed a novel rat hindlimb model of secondary lymphedema and showed that our rat model mimics human secondary lymphedema from early to late stages in terms of cell proliferation, lymphatic fluid accumulation, and skin fibrosis. Using our animal model, we investigated the disease progression and found that transforming growth factor-beta 1 (TGFB1) was produced by macrophages in the acute phase and by fibroblasts in the chronic phase of the disease. TGFB1 promoted the transition of fibroblasts into myofibroblasts and accelerated collagen synthesis, resulting in fibrosis, which further indicates that myofibroblasts and TGFB1/Smad signaling play key roles in fibrotic diseases. Furthermore, the presence of myofibroblasts in skin samples from lymphedema patients after cancer surgery emphasizes the role of these cells in promoting fibrosis. Suppression of myofibroblast-dependent TGFB1 production may therefore represent an effective pharmacological treatment for inhibiting skin fibrosis in human secondary lymphedema after cancer surgery.


Assuntos
Linfedema/etiologia , Linfedema/metabolismo , Complicações Pós-Operatórias , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Humanos , Imuno-Histoquímica , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linfedema/diagnóstico por imagem , Linfedema/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Ratos , Índice de Gravidade de Doença , Pele/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta1/genética
4.
Development ; 144(13): 2392-2401, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576770

RESUMO

The placental labyrinth is the interface for gas and nutrient exchange between the embryo and the mother; hence its proper development is essential for embryogenesis. However, the molecular mechanism underlying development of the placental labyrinth, particularly in terms of its endothelial organization, is not well understood. Here, we determined that fibronectin leucine-rich transmembrane protein 2 (FLRT2), a repulsive ligand of the UNC5 receptor family for neurons, is unexpectedly expressed in endothelial cells specifically in the placental labyrinth. Mice lacking FLRT2 in endothelial cells exhibited embryonic lethality at mid-gestation, with systemic congestion and hypoxia. Although they lacked apparent deformities in the embryonic vasculature and heart, the placental labyrinths of these embryos exhibited aberrant alignment of endothelial cells, which disturbed the feto-maternal circulation. Interestingly, this vascular deformity was related to endothelial repulsion through binding to the UNC5B receptor. Our results suggest that the proper organization of the placental labyrinth depends on coordinated inter-endothelial repulsion, which prevents uncontrolled layering of the endothelium.


Assuntos
Glicoproteínas de Membrana/metabolismo , Organogênese , Placenta/embriologia , Placenta/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Feminino , Deleção de Genes , Hipóxia/patologia , Glicoproteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Receptores de Netrina , Placenta/irrigação sanguínea , Placenta/citologia , Gravidez , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/metabolismo
5.
J Neuroinflammation ; 16(1): 208, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31707986

RESUMO

BACKGROUND: Microglial cells are activated in response to changes in brain homeostasis during aging, dementia, and stroke. Type 2 endocannabinoid receptors (CB2) and translocator protein 18 kD (TSPO) are considered to reflect distinct aspects of microglia-related neuroinflammatory responses in the brain. CB2 activation is considered to relate to the neuroprotective responses that may occur predominantly in the early stage of brain disorders such as Alzheimer's disease, while an increase in TSPO expression tends to occur later during neuroinflammation, in a proinflammatory fashion. However, this information was deduced from studies with different animal samples under different experimental settings. In this study, we aimed to examine the early microglial status in the inflammation occurring in the brains of senescence-accelerated mouse prone 10 (SAMP10) mice, using positron emission tomography (PET) with CB2 and TSPO tracers, together with immunohistochemistry. METHODS: Five- and 15-week-old SAMP10 mice that undergo neurodegeneration after 7 months of age were used. The binding levels of the TSPO tracer (R)-[11C]PK11195 and CB2 tracer [11C]NE40 were measured using PET in combination with immunohistochemistry for CB2 and TSPO. To our knowledge, this is the first study to report PET data for CB2 and TSPO at the early stage of cognitive impairment in an animal model. RESULTS: The standard uptake value ratios (SUVRs) of [11C]NE40 binding were significantly higher than those of (R)-[11C]PK11195 binding in the cerebral cortical region at 15 weeks of age. At 5 weeks of age, the [11C]NE40 SUVR tended to be higher than the (R)-[11C]PK11195 SUVR. The (R)-[11C]PK11195 SUVR did not significantly differ between 5- and 15-week-old mice. Consistently, immunostaining analysis confirmed the upregulation of CB2, but not TSPO. CONCLUSIONS: The use of the CB2 tracer [11C]NE40 and/or an immunohistochemical approach allows evaluation of the role of microglia in acute neuroinflammatory processes in the early stage of neurodegeneration. The present results provide in vivo evidence of different responses of two types of microglia to senescence-accelerated neuroinflammation, implying the perturbation of microglial balance by aging. Specific treatment for CB2-positive microglia might help ameliorate senescence-related neuroinflammation and the following neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores de GABA/metabolismo , Animais , Inflamação , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptor CB2 de Canabinoide/análise , Receptores de GABA/análise , Regulação para Cima
6.
Clin Anat ; 32(4): 541-545, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30719770

RESUMO

Several studies have suggested that vascular compression of more distal portions of the trigeminal nerve (Vth cranial nerve: VN) may cause trigeminal neuralgia (TN). However, neurosurgeons performing microvascular decompression intraoperatively cannot identify which type of myelin is being compressed by blood vessels. The aim of this study was to clarify the histological anatomy of central and peripheral myelin in the human VN. Histological analyses were conducted using photomicrographs from 134 cisternal segments of the VN from the brains of 67 cadavers. The three dimensions of the VN were measured in these sections: distance from the point at which the lateral-most pontine VN merges with the boundary between central and peripheral myelin (line-a), distance along the medial aspect (line-b), and the length of the transitional zone (TZ), known as the Obersteiner-Redlich zone. Twenty-nine of 134 VNs were available for study. The length of central myelin ranged from 0.69 to 8.66 mm (mean, 3.56 mm; median, 3.10 mm) along the lateral aspect and from 0.36 to 5 mm (mean, 1.81 mm; median, 1.40 mm) along the medial aspect of the VN. The length of the TZ ranged from 0.31 to 3.37 mm (mean, 1.75 mm; median, 1.63 mm). We report here, for the first time, that some individuals had much longer spans of central myelin than those reported previously. Some cases of TN may thus be caused by vascular compression of VN peripheral myelin, especially in cases where central myelin is extended to an unprecedented degree. Clin. Anat. 32:541-545, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Nervo Trigêmeo/anatomia & histologia , Neuralgia do Trigêmeo/etiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bainha de Mielina
7.
J Theor Biol ; 455: 97-100, 2018 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-30009793

RESUMO

Nonketotic-hyperglycinemia (NKH) is an autosomal recessive disorder associated with grave brain malformations and severe neurological symptoms, and also characterized by accumulation of a large amount of glycine in body fluids. NKH is caused by an inherited deficiency of the glycine cleavage system (GCS), which is the main system to degrade glycine in mammalians. These severe symptoms and grave bran malformations are not normally observed in the other amino acid metabolic disorders, suggesting that GCS should have unknown pivotal roles in brain development and function. Interestingly, GCS is indispensable in supplying proliferating cells with 5,10-methylenetetrahydrofolate as a one-carbon donor, which is essential for the synthesis of DNA in cell proliferation. Since GCS is expressed intensely and ubiquitously in the neuroepithelium, the lack of GCS might greatly impair the proliferation of neural stem cells. On the other hand, this system is also very important to regulate extracellular glycine concentrations. Since glycine is an important neurotransmitter, which binds to both glycine receptors and NMDA receptors, high glycine concentrations caused by the deficiency of GCS might cause the aberrant neurotransmission in the patient brains. Considering these unique two faces of GCS functions, proliferation disturbance and aberrant neurotransmission are intricately mixed in the developing brain, leading to the grave brain malformations and sever neurological symptoms.


Assuntos
Encéfalo/metabolismo , Glicina/metabolismo , Hiperglicinemia não Cetótica/metabolismo , Modelos Neurológicos , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Encéfalo/anormalidades , Encéfalo/patologia , Proliferação de Células , DNA/genética , Glicina/genética , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Células-Tronco Neurais/patologia
8.
J Neuroinflammation ; 14(1): 69, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356120

RESUMO

BACKGROUND: Upregulated levels of 18-kDa translocator proteins (TSPO) and type 2 endocannabinoid receptors (CB2) are considered to reflect different aspects of microglia-related neuroinflammatory responses in the brain. Relative to the increase in the TSPO expression that occurs slightly later during neuroinflammation in a proinflammatory fashion, CB2 activation is considered to relate to the neuroprotective responses that occurs predominantly at an early stage of brain disorders. These findings, however, were deduced from studies with different animal samples under different experimental settings. Here, we aimed to examined the differences in TSPO binding and CB2 availability at an early stage of stroke in the same animal using positron emission tomography (PET). METHODS: We used a total of eight Sprague-Dawley rats that underwent photothrombotic stroke surgery. The binding levels of a TSPO tracer [11C](R)PK11195 and a CB2 tracer [11C]NE40 were measured at 24 h after the surgery in the same animal using PET in combination with immunohistochemistry for CB2 and several other markers. A morphological inspection was also performed with X-ray computed tomography for small animals. RESULTS: The levels of [11C]NE40 binding potential (BPND) were significantly higher in the cerebral cortical region on the lesion side than those on the non-lesion side, whereas no difference was found in the levels of [11C](R)PK11195 BPND between hemispheres. The tracer influx index (R1) data were all reduced on the lesion side irrespective of tracers. This increase in [11C]NE40 BPND was concomitant with an elevation in CB2 expression mainly within the microglia in the peri-infarct area, as shown by immunohistochemical examinations with Iba-1, CD11b/c+, and NG2+ staining. CONCLUSIONS: The present results provide in vivo evidence of different responses of microglia occurring in the acute state of stroke. The use of the CB2 tracer [11C]NE40 allows us to evaluate the roles played by the neuroprotective aspect of microglia in acute neuroinflammatory processes.


Assuntos
Proteínas de Transporte/biossíntese , Tomografia por Emissão de Pósitrons/métodos , Receptor CB2 de Canabinoide/biossíntese , Receptores de GABA-A/biossíntese , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo , Animais , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Masculino , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/metabolismo , Ratos , Ratos Sprague-Dawley
9.
J Vasc Res ; 52(2): 127-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26345185

RESUMO

The pathophysiology underlying abdominal aortic aneurysms (AAAs) remains unknown. In this study, we applied imaging mass spectrometry (IMS) to analyze the pathophysiology of the aneurysmal wall. Comparisons were performed between the tissue samples from the neck and the sac of the AAA, at a single time point, in 30 patients who underwent elective surgery of their AAAs. The localization of each lipid molecule in the aortic wall was assessed by IMS. Histopathological examination and IMS revealed a characteristic distribution of triglycerides (TGs) specifically in the aneurismal adventitia of the sac. This characteristic TG distribution was derived from an ectopic appearance of adipocytes in the adventitia. Furthermore, ectopic adipocyte accumulation in the aortic wall leads to the loss of the collagen fiber network subsequent to the wall rupture. The underlying mechanism of adipocyte accumulation involves the presence of adipose-derived stem cells (ADSCs) in the aneurismal adventitia and the expression of peroxisome proliferator-activated receptor gamma 2, a master regulator of adipocyte differentiation by some ADSCs. This study reveals new, previously overlooked aspects of AAA pathology.


Assuntos
Aorta Abdominal/química , Aneurisma da Aorta Abdominal/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/análise , Adipócitos/química , Adipócitos/patologia , Túnica Adventícia/química , Túnica Adventícia/patologia , Idoso , Aorta Abdominal/patologia , Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/cirurgia , Colágeno/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , PPAR gama/análise , Células-Tronco/química , Células-Tronco/patologia
11.
PLoS One ; 19(6): e0304404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848397

RESUMO

Craniopharyngiomas are rare tumors of the central nervous system that typically present with symptoms such as headache and visual impairment, and those reflecting endocrine abnormalities, which seriously affect the quality of life of patients. Patients with craniopharyngiomas are at higher cardiometabolic risk, defined as conditions favoring the development of type 2 diabetes and cardiovascular disease. However, the underlying common pathogenic mechanisms of craniopharyngiomas and type 2 diabetes are not clear. Especially due to the difficulty of conducting in vitro or in vivo experiments on craniopharyngioma, we thought the common pathway analysis between craniopharyngioma and type 2 diabetes based on bioinformatics is a powerful and feasible method. In the present study, using public datasets (GSE94349, GSE68015, GSE38642 and GSE41762) obtained from the GEO database, the gene expression associated with adamantinomatous craniopharyngioma, a subtype of craniopharyngioma, and type 2 diabetes were analyzed using a bioinformatic approach. We found 11 hub genes using a protein-protein interaction network analysis. Of these, seven (DKK1, MMP12, KRT14, PLAU, WNT5B, IKBKB, and FGF19) were also identified by least absolute shrinkage and selection operator analysis. Finally, single-gene validation and receptor operating characteristic analysis revealed that four of these genes (MMP12, PLAU, KRT14, and DKK1) may be involved in the common pathogenetic mechanism of adamantinomatous craniopharyngioma and type 2 diabetes. In addition, we have characterized the differences in immune cell infiltration that characterize these two diseases, providing a reference for further research.


Assuntos
Biologia Computacional , Craniofaringioma , Diabetes Mellitus Tipo 2 , Neoplasias Hipofisárias , Humanos , Craniofaringioma/genética , Craniofaringioma/patologia , Craniofaringioma/metabolismo , Diabetes Mellitus Tipo 2/genética , Biologia Computacional/métodos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Mapas de Interação de Proteínas/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Biomarcadores/metabolismo
12.
Exp Cell Res ; 318(14): 1716-25, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22659164

RESUMO

CLP36 is a member of the ALP/Enigma protein family and has been shown to be localized to stress fibers in various cells. We previously reported that depletion of CLP36 caused loss of stress fibers in BeWo choriocarcinoma cells, but it remains unclear how CLP36 contributes to stress fiber formation. In this study, we generated CLP36-depleted F2408 fibroblasts and found that stress fibers showed abnormal non-oriented organization in these cells. In addition to CLP36, F2408 cells contained RIL, another ALP/Enigma protein, and we demonstrated that RIL could compensate for the role of CLP36 in stress fiber formation. CLP36 and RIL form a complex with α-actinin-1 and palladin. We found a strong correlation between loss of CLP36/RIL and failure of α-actinin-1 or palladin to localize on stress fibers. In addition, time lapse observation revealed that incorporation of RIL stabilizes stress fibers and that CLP36 influences the dynamic architecture of these fibers. Our findings indicate that CLP36 and RIL have a redundant role in the formation of stress fibers, but have different effects on stress fiber dynamics in F2408 cells.


Assuntos
Actinina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Fibras de Estresse/metabolismo , Animais , Células Cultivadas , Ratos
13.
Front Neurosci ; 16: 827284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237124

RESUMO

Electrical activity plays crucial roles in neural circuit formation and remodeling. During neocortical development, neurons are generated in the ventricular zone, migrate to their correct position, elongate dendrites and axons, and form synapses. In this review, we summarize the functions of ion channels and transporters in neocortical development. Next, we discuss links between neurological disorders caused by dysfunction of ion channels (channelopathies) and neocortical development. Finally, we introduce emerging optical techniques with potential applications in physiological studies of neocortical development and the pathophysiology of channelopathies.

14.
Life (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36675958

RESUMO

Traumatic spinal cord injury (SCI) induces various complex pathological processes that cause physical impairment and psychological devastation. The two phases of SCI are primary mechanical damage (the immediate result of trauma) and secondary injury (which occurs over a period of minutes to weeks). After the mechanical impact, vascular disruption, inflammation, demyelination, neuronal cell death, and glial scar formation occur during the acute phase. This sequence of events impedes nerve regeneration. In the nervous system, various extracellular secretory factors such as neurotrophic factors, growth factors, and cytokines are involved in these events. In the vascular system, the blood-spinal cord barrier (BSCB) is damaged, allowing immune cells to infiltrate the parenchyma. Later, endogenous angiogenesis is promoted during the subacute phase. In this review, we describe the roles of secretory factors in the nervous and vascular systems following traumatic SCI, and discuss the outcomes of their therapeutic application in traumatic SCI.

15.
J Chem Neuroanat ; 121: 102084, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182716

RESUMO

Bone morphogenetic protein 10 (BMP10), is a member of the transforming growth factor ß (TGFß) superfamily. Although BMP10 plays pivotal roles during development, including vascular development and cardiogenesis, little information is available for BMP10 expression in the central nervous system (CNS). We, thus, investigated BMP10 expression in the adult rat CNS using immunohistochemistry. BMP10 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP10 protein. These data indicate that BMP10 is widely expressed throughout the adult CNS, and this abundant expression strongly supports the idea that BMP10 also plays important roles in the adult CNS.


Assuntos
Encéfalo , Neurônios , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central , Neurônios/metabolismo , Ratos , Ratos Wistar
16.
Lymphat Res Biol ; 20(6): 593-599, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394362

RESUMO

Background: Secondary lymphedema (LE) occurs due to the disruption of lymphatic circulation. Lymphatic fluid accumulation in subcutaneous tissues induces adipocyte proliferation. Obesity is an important risk factor for the occurrence and deterioration of LE. Although the relationship between LE and subcutaneous adipose tissue increase has been reported clinically, their pathophysiological relationship remains unknown. Thus, we aimed to verify whether subcutaneous adipose tissue increase is involved in the pathophysiology of secondary LE. Methods and Results: The hindlimb model of secondary LE was created using male Sprague-Dawley rats (control and LE groups; n = 5 each). Skin samples were obtained on postoperative day 168. Histological examination and quantitative real-time polymerase chain reaction analysis of inflammatory adipokines, tumor necrosis factor-alpha (Tnf-α), C-C chemokine ligand 2 (Ccl2), and interleukin-6 (Il-6) were performed. Limb volume and subcutaneous adipose tissues significantly increased in the LE group compared with those in the control. Macrophages aggregated in the augmented adipose tissues, around the adipocytes, and formed crown-like structures (CLSs). The number of CLSs significantly increased in the LE group. These macrophages expressed transforming growth factor-beta 1 (TGF-ß1). Inflammatory adipokine secretion was not observed. Although Il-6 expression increased in the LE group, IL-6 was expressed in subcutaneous myofibroblasts but not in subcutaneous adipocytes. Conclusion: As TGF-ß1 derived from subcutaneous myofibroblasts is involved in skin fibrosis during LE, TGF-ß1 derived from adipose tissues may also play a similar role. Drug treatment for subcutaneous adipose tissue reduction may improve the skin condition in secondary LE and may be a new therapeutic strategy.


Assuntos
Linfedema , Fator de Crescimento Transformador beta1 , Ratos , Animais , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Tecido Adiposo/patologia , Gordura Subcutânea/metabolismo , Linfedema/patologia
17.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104247

RESUMO

Blood vessel abnormalization alters cancer cell metabolism and promotes cancer dissemination and metastasis. However, the biological features of the abnormalized blood vessels that facilitate cancer progression and whether they can be targeted therapeutically have not been fully investigated. Here, we found that an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), is expressed preferentially in abnormalized vessels of advanced colorectal cancers in humans and that its expression correlates negatively with long-term survival. Endothelial cell-specific deletion of Flrt2 in mice selectively pruned abnormalized vessels, resulting in a unique metabolic state termed "oxygen-glucose uncoupling," which suppressed tumor metastasis. Moreover, Flrt2 deletion caused an increase in the number of mature vessels, resulting in a significant increase in the antitumor effects of immune checkpoint blockers. Mechanistically, we found that FLRT2 forms noncanonical interendothelial adhesions that safeguard against oxidative stress through homophilic binding. Together, our results demonstrated the existence of tumor-specific interendothelial adhesions that enable abnormalized vessels to facilitate cancer aggressiveness. Targeting this type of adhesion complex could be a safe and effective therapeutic option to suppress cancer progression.


Assuntos
Glicoproteínas de Membrana , Neoplasias , Animais , Células Endoteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Neovascularização Patológica
18.
Angiology ; 73(6): 546-556, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35067086

RESUMO

The pathophysiological difference between aortic atheromas and aneurysms is unknown. We focused on the vasa vasorum (VV), which play a critical role in maintaining aortic homeostasis and are also involved in vascular diseases. We investigated the differences in VV between the atheromas and aneurysms. Human abdominal aortic samples were obtained from patients with abdominal aortic aneurysm during surgery or autopsy cases. Autopsy cases were divided into 2 groups according to atheromas. The VV were evaluated using immunohistochemical staining for von Willebrand factor. Intimal VV increased in both the atheroma and aneurysm groups, medial VV increased, and adventitial VV decreased only in the aneurysm group. We also observed that the medial VV were connected to the adventitial VV in the atheroma group and to intimal VV in the aneurysm group. We suggest the outside-in VV or inside-out VV theories. Atheroma induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from adventitial VV (outside-in VV). However, adventitial VV decrease induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from aortic lumen (inside-out VV). These differences of VV may contribute in elucidating the pathophysiology of aortic diseases.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Placa Aterosclerótica , Aorta Abdominal , Humanos , Hipóxia , Vasa Vasorum
19.
Med Hypotheses ; 153: 110626, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34130114

RESUMO

Primary sensory neurons are usually situated in ganglia outside the brain, while the mesencephalic nucleus of the trigeminal nerve (Me5) is situated inside the brain. However, it remains unknown why only Me5 situated inside the brain is. The neurons of Me5 are the cell bodies of primary afferent fibers concerned with the muscles of mastication and periodontal receptors of both maxillary and mandibular teeth. Interestingly, there was no Me5 till the evolution level of the agnatha, vertebrates which lack jaws, while Me5 appeared with the evolution of jawed vertebrates, the gnathostomes. Thus, I speculate that the appearance of jaws necessitated the emergence of a novel sensory system including newly-made primary sensory neurons to co-ordinate jaw movement and this need was met by the appearance of Me5. Although primary sensory neurons are usually generated from the neural crest or the neurogenic placodes, primary sensory neurons in Me5 are derived from neuroepithelium of the dorsal midline of the midbrain. Taken together, I propose the following hypothesis; (1) Me5 did not exist till the evolution level of agnatha, which lacks jaw. (2) When jawed vertebrates evolved, a new sensory system including new primary sensory neurons for mastication was needed. (3) At that point, there was no capacity for the neural crest and neurogenic placodes to make primary sensory neurons. (4) However, there remained capacity only for the neuroepithelium of the midbrain to make primary sensory neurons. (5) Thus, Me5 was newly made inside the CNS.


Assuntos
Mesencéfalo , Núcleos do Trigêmeo , Animais , Axônios , Neurônios , Nervo Trigêmeo
20.
Med Hypotheses ; 147: 110484, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444905

RESUMO

Bipolar disorder (BD) is a unique disorder where the same patient exhibits depression and mania, states with polar opposite mood symptoms. Lithium is an alkali metal that is widely used for the treatment of BD. However, it is largely unknown why lithium can stabilize mood. Lithium is known to inhibit glycogen synthase kinase-3ß (GSK3 ß). Interestingly, both in the glutamatergic system and GABAergic system, active GSK3 ß decreases neuronal excitability, whereas inhibition of GSK3 ß increases neuronal excitability, suggesting that activation of GSK3 ß leads to depressive mood, and inhibition of GSK3 ß leads to manic mood. The activity of GSK3ß is regulated by many kinases and a phosphatase, and they are further controlled by several neurotransmitters and signaling molecules. Thus, these complicated control systems might make the swing of GSK3ß activity, the swing of GSK3ß activity makes the swing of neuronal excitability and finally resulting in the intrinsic swing of mood, usually observed in healthy human. BD is considered that the amplitude of the mood swing is enhanced by many factors. Lithium can dose-dependently decrease the amplitude of the swing of GSK3ß activity. In addition, lithium also inhibits K+ channel activation, leading to the elongation of refractory period, resulting in the inhibition of neuronal excitability. Therefore, in depressive mood, lithium can increase neuronal activity via the inhibition of neuronal GSK3beta activity, and in manic mood, lithium can inhibit neuronal excitability via inhibiting K+ channel activation, therefore the amplitude of the mood swing is decreased, i.e. alleviating the depressive state and the manic state, resulting in the normalization of the mood swing.


Assuntos
Transtorno Bipolar , Lítio , Afeto , Transtorno Bipolar/tratamento farmacológico , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Humanos , Lítio/uso terapêutico , Neurônios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa