Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37974505

RESUMO

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Assuntos
Aneuploidia , Transtornos Cromossômicos , Cromossomos Humanos Par 22 , Anormalidades do Olho , Cardiopatias Congênitas , Humanos , Estudos Retrospectivos , Hibridização in Situ Fluorescente , Cromossomos Humanos Par 22/genética , Cardiopatias Congênitas/genética
2.
J Med Genet ; 60(6): 620-626, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36368868

RESUMO

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Assuntos
Fenda Labial , Fissura Palatina , Síndrome de Goldenhar , Humanos , Animais , Síndrome de Goldenhar/genética , Peixe-Zebra/genética , Variações do Número de Cópias de DNA/genética , Fatores de Transcrição Otx/genética
3.
Am J Med Genet A ; 191(1): 52-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196855

RESUMO

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.


Assuntos
Anormalidades Múltiplas , Microcefalia , Humanos , Hibridização Genômica Comparativa , Anormalidades Múltiplas/genética , Microcefalia/genética , Síndrome , Estudos de Associação Genética
4.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137615

RESUMO

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Humanos , Variações do Número de Cópias de DNA/genética , Exoma/genética , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos Prospectivos
5.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835074

RESUMO

Reciprocal translocation (RT) carriers produce a proportion of unbalanced gametes that expose them to a higher risk of infertility, recurrent miscarriage, and fetus or children with congenital anomalies and developmental delay. To reduce these risks, RT carriers can benefit from prenatal diagnosis (PND) or preimplantation genetic diagnosis (PGD). Sperm fluorescence in situ hybridization (spermFISH) has been used for decades to investigate the sperm meiotic segregation of RT carriers, but a recent report indicates a very low correlation between spermFISH and PGD outcomes, raising the question of the usefulness of spermFISH for these patients. To address this point, we report here the meiotic segregation of 41 RT carriers, the largest cohort reported to date, and conduct a review of the literature to investigate global segregation rates and look for factors that may or may not influence them. We confirm that the involvement of acrocentric chromosomes in the translocation leads to more unbalanced gamete proportions, in contrast to sperm parameters or patient age. In view of the dispersion of balanced sperm rates, we conclude that routine implementation of spermFISH is not beneficial for RT carriers.


Assuntos
Análise do Sêmen , Sêmen , Humanos , Gravidez , Feminino , Masculino , Hibridização in Situ Fluorescente , Heterozigoto , Translocação Genética , Espermatozoides , Segregação de Cromossomos , Meiose
6.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768883

RESUMO

Male infertility is a common and complex disease and presents as a wide range of heterogeneous phenotypes. Multiple morphological abnormalities of the sperm flagellum (MMAF) phenotype is a peculiar condition of extreme morphological sperm defects characterized by a mosaic of sperm flagellum defects to a total asthenozoospermia. At this time, about 40 genes were associated with the MMAF phenotype. However, mutation prevalence for most genes remains individually low and about half of individuals remain without diagnosis, encouraging us to pursue the effort to identify new mutations and genes. In the present study, an a cohort of 167 MMAF patients was analyzed using whole-exome sequencing, and we identified three unrelated patients with new pathogenic mutations in DNHD1, a new gene recently associated with MMAF. Immunofluorescence experiments showed that DNHD1 was totally absent from sperm cells from DNHD1 patients, supporting the deleterious effect of the identified mutations. Transmission electron microscopy reveals severe flagellum abnormalities of sperm cells from one mutated patient, which appeared completely disorganized with the absence of the central pair and midpiece defects with a shortened and misshapen mitochondrial sheath. Immunostaining of IFT20 was not altered in mutated patients, suggesting that IFT may be not affected by DNHD1 mutations. Our data confirmed the importance of DNHD1 for the function and structural integrity of the sperm flagellum. Overall, this study definitively consolidated its involvement in MMAF phenotype on a second independent cohort and enriched the mutational spectrum of the DNHD1 gene.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Humanos , Masculino , Anormalidades Múltiplas/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação , Sêmen , Cauda do Espermatozoide , Espermatozoides/patologia , Dineínas/metabolismo
7.
Am J Hum Genet ; 104(2): 331-340, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686508

RESUMO

Male infertility is a major health concern. Among its different causes, multiple morphological abnormalities of the flagella (MMAF) induces asthenozoospermia and is one of the most severe forms of qualitative sperm defects. Sperm of affected men display short, coiled, absent, and/or irregular flagella. To date, six genes (DNAH1, CFAP43, CFAP44, CFAP69, FSIP2, and WDR66) have been found to be recurrently associated with MMAF, but more than half of the cases analyzed remain unresolved, suggesting that many yet-uncharacterized gene defects account for this phenotype. Here, whole-exome sequencing (WES) was performed on 168 infertile men who had a typical MMAF phenotype. Five unrelated affected individuals carried a homozygous deleterious mutation in ARMC2, a gene not previously linked to the MMAF phenotype. Using the CRISPR-Cas9 technique, we generated homozygous Armc2 mutant mice, which also presented an MMAF phenotype, thus confirming the involvement of ARMC2 in human MMAF. Immunostaining experiments in AMRC2-mutated individuals and mutant mice evidenced the absence of the axonemal central pair complex (CPC) proteins SPAG6 and SPEF2, whereas the other tested axonemal and peri-axonemal components were present, suggesting that ARMC2 is involved in CPC assembly and/or stability. Overall, we showed that bi-allelic mutations in ARMC2 cause male infertility in humans and mice by inducing a typical MMAF phenotype, indicating that this gene is necessary for sperm flagellum structure and assembly.


Assuntos
Alelos , Astenozoospermia/genética , Astenozoospermia/patologia , Proteínas do Citoesqueleto/genética , Flagelos/genética , Mutação , Espermatozoides/anormalidades , Espermatozoides/patologia , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/deficiência , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos , Proteínas dos Microtúbulos/deficiência , Proteínas
8.
Am J Med Genet A ; 188(12): 3492-3504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135330

RESUMO

Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.


Assuntos
Atresia Esofágica , Fístula Traqueoesofágica , Humanos , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/complicações , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Atresia Esofágica/complicações , Exoma/genética , Sequenciamento do Exoma
9.
Hum Genet ; 140(9): 1367-1377, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255152

RESUMO

Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, suggesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and inner dynein arm. Immunostaining experiments in the patient's sperm cells demonstrated the absence of WDR66 and RSPH1 proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR-Cas9 technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional, structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI. Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional defects of the sperm flagellum that may also cause ICSI failures.


Assuntos
Proteínas do Citoesqueleto , Mutação da Fase de Leitura , Homozigoto , Infertilidade Masculina , Cauda do Espermatozoide/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos
10.
Hum Genet ; 140(1): 43-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33108537

RESUMO

Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.


Assuntos
Infertilidade Masculina/genética , Proteínas de Membrana/genética , Teratozoospermia/genética , Hormônios Testiculares/genética , Estudos de Coortes , Deleção de Genes , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Homozigoto , Humanos , Masculino , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Espermatozoides/anormalidades , Sequenciamento do Exoma/métodos
11.
Am J Hum Genet ; 102(4): 636-648, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29606301

RESUMO

The multiple morphological abnormalities of the flagella (MMAF) phenotype is among the most severe forms of sperm defects responsible for male infertility. The phenotype is characterized by the presence in the ejaculate of immotile spermatozoa with severe flagellar abnormalities including flagella being short, coiled, absent, and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous, and genes thus far associated with MMAF account for only one-third of cases. Here we report the identification of homozygous truncating mutations (one stop-gain and one splicing variant) in CFAP69 of two unrelated individuals by whole-exome sequencing of a cohort of 78 infertile men with MMAF. CFAP69 encodes an evolutionarily conserved protein found at high levels in the testis. Immunostaining experiments in sperm from fertile control individuals showed that CFAP69 localized to the midpiece of the flagellum, and the absence of CFAP69 was confirmed in both individuals carrying CFPA69 mutations. Additionally, we found that sperm from a Cfap69 knockout mouse model recapitulated the MMAF phenotype. Ultrastructural analysis of testicular sperm from the knockout mice showed severe disruption of flagellum structure, but histological analysis of testes from these mice revealed the presence of all stages of the seminiferous epithelium, indicating that the overall progression of spermatogenesis is preserved and that the sperm defects likely arise during spermiogenesis. Together, our data indicate that CFAP69 is necessary for flagellum assembly/stability and that in both humans and mice, biallelic truncating mutations in CFAP69 cause autosomal-recessive MMAF and primary male infertility.


Assuntos
Proteínas do Citoesqueleto/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Animais , Axonema/metabolismo , Epididimo/patologia , Epididimo/ultraestrutura , Homozigoto , Humanos , Masculino , Camundongos Knockout , Mutação/genética , Sêmen/metabolismo , Peça Intermédia do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura , Espermatogênese , Testículo/patologia , Sequenciamento do Exoma
12.
J Med Genet ; 57(10): 708-716, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32161152

RESUMO

BACKGROUND: Multiple morphological abnormalities of the flagella (MMAF) consistently lead to male infertility due to a reduced or absent sperm motility defined as asthenozoospermia. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analysed remain unresolved, suggesting that many yet uncharacterised gene defects account for this phenotype METHODS: Exome sequencing was performed on 167 infertile men with an MMAF phenotype. Immunostaining and transmission electron microscopy (TEM) in sperm cells from affected individuals were performed to characterise the ultrastructural sperm defects. Gene inactivation using RNA interference (RNAi) was subsequently performed in Trypanosoma. RESULTS: We identified six unrelated affected patients carrying a homozygous deleterious variants in MAATS1, a gene encoding CFAP91, a calmodulin-associated and spoke-associated complex (CSC) protein. TEM and immunostaining experiments in sperm cells showed severe central pair complex (CPC) and radial spokes defects. Moreover, we confirmed that the WDR66 protein is a physical and functional partner of CFAP91 into the CSC. Study of Trypanosoma MAATS1's orthologue (TbCFAP91) highlighted high sequence and structural analogies with the human protein and confirmed the axonemal localisation of the protein. Knockdown of TbCFAP91 using RNAi impaired flagellar movement led to CPC defects in Trypanosoma as observed in humans. CONCLUSIONS: We showed that CFAP91 is essential for normal sperm flagellum structure and function in human and Trypanosoma and that biallelic variants in this gene lead to severe flagellum malformations resulting in astheno-teratozoospermia and primary male infertility.


Assuntos
Anormalidades Múltiplas/genética , Astenozoospermia/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Infertilidade Masculina/genética , Anormalidades Múltiplas/patologia , Animais , Astenozoospermia/patologia , Axonema/genética , Axonema/ultraestrutura , Homozigoto , Humanos , Infertilidade Masculina/patologia , Masculino , Mutação/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Trypanosoma/genética , Sequenciamento do Exoma
13.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638739

RESUMO

Numerical chromosomal aberrations in sperm are considered to be a major factor in infertility, early pregnancy loss and syndromes with developmental and cognitive disabilities in mammals, including primates. Despite numerous studies in human and farm animals, the incidence and importance of sperm aneuploidies in non-human primate remains mostly undetermined. Here we investigated the incidence and distribution of sperm aneuploidy in chimpanzees (Pan troglodytes), the species closest to human. We identify evolutionary conserved DNA sequences in human and chimpanzee and selected homologous sub-telomeric regions for all chromosomes to build custom probes and perform sperm-FISH analysis on more than 10,000 sperm nuclei per chromosome. Chimpanzee mean autosomal disomy rate was 0.057 ± 0.02%, gonosomes disomy rate was 0.198% and the total disomy rate was 1.497%. The proportion of X or Y gametes was respectively 49.94% and 50.06% for a ratio of 1.002 and diploidy rate was 0.053%. Our data provide for the first time an overview of aneuploidy in non-human primate sperm and shed new insights into the issues of aneuploidy origins and mechanisms.


Assuntos
Aneuploidia , Cromossomos de Mamíferos/genética , Hibridização in Situ Fluorescente , Espermatozoides , Animais , Humanos , Masculino , Pan troglodytes
14.
Hum Reprod ; 34(10): 2071-2079, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621862

RESUMO

The use of high-throughput sequencing techniques has allowed the identification of numerous mutations in genes responsible for severe astheno-teratozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). However, more than half of the analysed cases remain unresolved suggesting that many yet uncharacterised gene defects account for this phenotype. Based on whole-exome sequencing data from a large cohort of 167 MMAF-affected subjects, we identified two unrelated affected individuals carrying a homozygous deleterious mutation in CFAP70, a gene not previously linked to the MMAF phenotype. One patient had a homozygous splice variant c.1723-1G>T, altering a consensus splice acceptor site of CFAP70 exon 16, and one had a likely deleterious missense variant in exon 3 (p.Phe60Ile). The CFAP70 gene encodes a regulator protein of the outer dynein arms (ODA) strongly expressed in the human testis. In the sperm cells from the patient carrying the splice variant, immunofluorescence (IF) experiments confirmed the absence of the protein in the sperm flagellum. Moreover, IF analysis showed the absence of markers for the ODAs and the central pair complex of the axoneme. Interestingly, whereas CFAP70 staining was present in sperm cells from patients with mutations in the three other MMAF-related genes ARMC2, FSIP2 and CFAP43, we observed an absence of staining in sperm cells from patients mutated in the WDR66 gene, suggesting a possible interaction between two different axonemal components. In conclusion, this work provides the first evidence that loss of CFAP70 function causes MMAF and that ODA-related proteins may be crucial for the assembly and/or stability of the flagellum axoneme in addition to its motility.


Assuntos
Astenozoospermia/genética , Proteínas Associadas aos Microtúbulos/genética , Cauda do Espermatozoide/patologia , Astenozoospermia/diagnóstico , Astenozoospermia/patologia , Axonema/patologia , Análise Mutacional de DNA , Éxons/genética , Homozigoto , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Mutação de Sentido Incorreto , Sítios de Splice de RNA/genética , Índice de Gravidade de Doença , Sequenciamento do Exoma
15.
Am J Med Genet A ; 179(4): 650-654, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30737907

RESUMO

The AMME syndrome defined as the combination of Alport syndrome, intellectual disability, midface hypoplasia, and elliptocytosis (AMME) is known to be a contiguous gene syndrome associated with microdeletions in the region Xq22.3q23. Recently, using exome sequencing, missense pathogenic variants in AMMECR1 have been associated with intellectual disability, midface hypoplasia, and elliptocytosis. In these cases, AMMECR1 gene appears to be responsible for most of the clinical features of the AMME syndrome except for Alport syndrome. In this article, we present two unrelated male patients with short stature, mild intellectual disability or neurodevelopmental delay, sensorineural hearing loss, and elliptocytosis harboring small microdeletions identified by array-CGH involving TMEM164 and AMMECR1 genes and SNORD96B small nucleolar RNA for one patient, inherited from their mothers. These original cases further confirm that most specific AMME features are ascribed to AMMECR1 haploinsufficiency. These cases reporting the smallest microdeletions encompassing AMMECR1 gene provide new evidence for involvement of AMMECR1 in the AMME phenotype and permit to discuss a phenotype related to AMMECR1 haploinsufficiency: developmental delay/intellectual deficiency, midface hypoplasia, midline defect, deafness, and short stature.


Assuntos
Deleção Cromossômica , Cromossomos Humanos X/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Eliptocitose Hereditária/genética , Eliptocitose Hereditária/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteínas de Membrana/genética , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Proteínas/genética , Criança , Humanos , Masculino , Prognóstico
16.
Clin Genet ; 94(6): 575-580, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30221343

RESUMO

We report findings from a male fetus of 26 weeks' gestational age with severe isolated intrauterine growth restriction (IUGR). Chromosomal microarray analysis (CMA) on amniotic fluid cells revealed a 1.06-Mb duplication in 19q13.42 inherited from the healthy father. This duplication contains 34 genes including ZNF331, a gene encoding a zinc-finger protein specifically imprinted (paternally expressed) in the placenta. Study of the ZNF331 promoter by methylation-specific-multiplex ligation-dependent probe amplification showed that the duplicated allele was not methylated in the fetus unlike in the father's genome, suggesting both copies of the ZNF331 gene are expressed in the fetus. The anti-ZNF331 immunohistochemical analysis confirmed that ZNF331 was expressed at higher levels in renal and placental tissues from this fetus compared to controls. Interestingly, ZNF331 expression levels in the placenta have previously been reported to inversely correlate with fetal growth parameters. The original observation presented in this report showed that duplication of ZNF331 could be a novel genetic cause of isolated IUGR and underlines the usefulness of CMA to investigate the genetic causes of isolated severe IUGR.


Assuntos
Cromossomos Humanos Par 19 , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Duplicação Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Impressão Genômica , Adulto , Biópsia , Proteínas de Ligação a DNA/genética , Epigênese Genética , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Gravidez , Ultrassonografia Pré-Natal
17.
Hum Reprod ; 33(10): 1973-1984, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137358

RESUMO

STUDY QUESTION: Can whole-exome sequencing (WES) of infertile patients identify new genes responsible for multiple morphological abnormalities of the sperm flagella (MMAF)? SUMMARY ANSWER: WES analysis of 78 infertile men with a MMAF phenotype permitted the identification of four homozygous mutations in the fibrous sheath (FS) interacting protein 2 (FSIP2) gene in four unrelated individuals. WHAT IS KNOWN ALREADY: The use of high-throughput sequencing techniques revealed that mutations in the dynein axonemal heavy chain 1 (DNAH1) gene, and in the cilia and flagella associated protein 43 (CFAP43) and 44 (CFAP44) genes account for approximately one-third of MMAF cases thus indicating that other relevant genes await identification. STUDY DESIGN, SIZE, DURATION: This was a retrospective genetics study of 78 patients presenting a MMAF phenotype who were recruited in three fertility clinics between 2008 and 2015. Control sperm samples were obtained from normospermic donors. Allelic frequency for control subjects was derived from large public databases. PARTICIPANTS/MATERIALS, SETTING, METHODS: WES was performed for all 78 subjects. All identified variants were confirmed by Sanger sequencing. Relative mRNA expression levels for the selected candidate gene (FSIP2) was assessed by quantitative RT-PCR in a panel of normal human and mouse tissues. To characterize the structural and ultrastructural anomalies present in patients' sperm, immunofluorescence (IF) was performed on sperm samples from two subjects with a mutation and one control and transmission electron microscopy (TEM) analyses was performed on sperm samples from one subject with a mutation and one control. MAIN RESULTS AND THE ROLE OF CHANCE: We identified four unrelated patients (4/78, 5.1%) with homozygous loss of function mutations in the FSIP2 gene, which encodes a protein of the sperm FS and is specifically expressed in human and mouse testis. None of these mutations were reported in control sequence databases. TEM analyses showed a complete disorganization of the FS associated with axonemal defects. IF analyses confirmed that the central-pair microtubules and the inner and outer dynein arms of the axoneme were abnormal in all four patients carrying FSIP2 mutations. Importantly, and in contrast to what was observed in patients with MMAF and mutations in other MMAF-related genes (DNAH1, CFAP43 and CFAP44), mutations in FSIP2 led to the absence of A-kinase anchoring protein 4 (AKAP4). LIMITATIONS, REASONS FOR CAUTION: The low number of biological samples and the absence of a reliable anti-FSIP2 antibody prevented the formal demonstration that the FSIP2 protein was absent in sperm from subjects with a FSIP2 mutation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings indicate that FSIP2 is one of the main genes involved in MMAF syndrome. In humans, genes previously associated with a MMAF phenotype encoded axonemal-associated proteins (DNAH1, CFAP43 and CFAP44). We show here that FSIP2, a protein of the sperm FS, is also logically associated with MMAF syndrome as we showed that it is necessary for FS assembly and for the overall axonemal and flagellar biogenesis. As was suggested before in mouse and man, our results also suggest that defects in AKAP4, one of the main proteins interacting with FSIP2, would induce a MMAF phenotype. Finally, this work reinforces the demonstration that WES sequencing is a good strategy to reach a genetic diagnosis for patients with severe male infertility phenotypes. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the following grants: the 'MAS-Flagella' project financed by the French ANR and the DGOS for the program PRTS 2014 (14-CE15) and the 'Whole genome sequencing of patients with Flagellar Growth Defects (FGD)' project financed by the Fondation Maladies Rares for the program Séquençage à haut débit 2012. The authors have no conflict of interest.


Assuntos
Cauda do Espermatozoide/patologia , Teratozoospermia/genética , Adulto , Estudos de Casos e Controles , Humanos , Infertilidade Masculina/genética , Masculino , Pessoa de Meia-Idade , Mutação , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cauda do Espermatozoide/ultraestrutura , Teratozoospermia/diagnóstico , Sequenciamento do Exoma/métodos
18.
J Med Genet ; 54(7): 502-510, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270404

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS: We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS: We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS: Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.


Assuntos
Haploinsuficiência/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Criança , Pré-Escolar , Feminino , Feto/metabolismo , Genoma Humano , Humanos , Lactente , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Rim/patologia , Masculino , Síndrome
19.
Genet Med ; 19(6): 701-710, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27906199

RESUMO

PURPOSE: To determine whether duplication of the ARID1A gene is responsible for a new recognizable syndrome. METHODS: We describe four patients with a 1p36.11 microduplication involving ARID1A as identified by array-comparative genomic hybridization . We performed comparative transcriptomic analysis of patient-derived fibroblasts using RNA sequencing and evaluated the impact of ARID1A duplication on the cell cycle using fluorescence-activated cell sorting. Functional relationships between differentially expressed genes were investigated with ingenuity pathway analysis (IPA). RESULTS: Combining the genomic data, we defined a small (122 kb), minimally critical region that overlaps the full ARID1A gene. The four patients shared a strikingly similar phenotype that included intellectual disability and microcephaly. Transcriptomic analysis revealed the deregulated expression of several genes previously linked to microcephaly and developmental disorders as well as the involvement of signaling pathways relevant to microcephaly, among which the polo-like kinase (PLK) pathway was especially notable. Cell-cycle analysis of patient-derived fibroblasts showed a significant increase in the proportion of cells in G1 phase at the expense of G2-M cells. CONCLUSION: Our study reports a new microduplication syndrome involving the ARID1A gene. This work is the first step in clarifying the pathophysiological mechanism that links changes in the gene dosage of ARID1A with intellectual disability and microcephaly.Genet Med advance online publication 01 December 2016.


Assuntos
Cromossomos Humanos Par 1 , Duplicação Gênica , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Proteínas de Ligação a DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Síndrome
20.
Hum Reprod ; 31(6): 1164-72, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27094479

RESUMO

STUDY QUESTION: Does DNAH1 status influence intracytoplasmic sperm injection (ICSI) outcomes for patients with multiple morphological abnormalities of the sperm flagella (MMAF)? SUMMARY ANSWER: Despite a highly abnormal morphology, sperm from MMAF patients with DNAH1 mutations have a low aneuploidy rate and good nuclear quality, leading to good embryonic development following ICSI and a high pregnancy rate. WHAT IS KNOWN ALREADY: Teratozoospermia represents a heterogeneous group including a wide range of phenotypes. Among all these qualitative defects, a flagellar phenotype called MMAF is characterized by a mosaic of morphological abnormalities of the flagellum, including coiled, bent, irregular, short or/and absent flagella, mainly due to the absence of the axonemal central pair microtubules. We previously demonstrated that homozygous mutations in the DNAH1 gene, encoding an inner arm heavy chain dynein, are frequently found in patients with MMAF (28% of the patients from the initial cohort). Numerous studies have reported an increased rate of aneuploidy and a poor sperm nuclear quality related to sperm flagellar abnormalities, which could impede ICSI outcome. Moreover, success rates after ICSI may be influenced by the type of ultrastructural flagellar defects and/or by the gene defects carried by the patients. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study included 6 infertile males with MMAF due to deleterious homozygous DNAH1 mutations and their respective spouses, who underwent 9 ISCI cycles, with 16 embryos being transferred. ICSI results were compared with two control populations of 13 MMAF men without DNAH1 mutations and an aged-matched control group of 1431 non-MMAF couples. All ICSI attempts took place between 2000 and 2012. PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical and biological data were collected from patients treated for infertility at the CPSR les Jasmins in Tunis (Tunisia). We compared the ICSI outcomes obtained with couples including DNAH1 mutated and nonmutated patients and non-MMAF couples. For the analysis of the chromosomal status, fluorescence in situ hybridization (FISH) analyses were performed on sperm cells from 3 DNAH1-mutated patients and from 29 fertile control subjects. Sperm chromatin condensation and DNA fragmentation were evaluated using aniline blue staining and TUNEL assays, respectively, on sperm cells from 3 DNAH1-mutated men and 6 fertile controls. MAIN RESULTS AND THE ROLE OF CHANCE: There was a significantly increased proportion of disomy XY and 18 in sperm from DNAH1 mutated patients compared with fertile controls (1.52 versus 0.28%, P = 0.0001 and 0.64 versus 0.09%, P = 0.0001). However, there were no statistically significant differences among sperm from the two groups in their frequencies of either 13, 21, XX or YY disomy or diploidy. Measures of DNA compaction and fragmentation demonstrated a good nuclear sperm quality among DNAH1 mutated men. The overall fertilization, pregnancy and delivery rates of couples including DNAH1 mutated men were of 70.8, 50.0 and 37.5%, respectively. There were no statistically significant differences in any of these parameters compared with the two control groups (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: A limitation of this study is the small number of DNAH1-mutated patients available and the low number of genes identified in MMAF. Further genetic studies are warranted to identify other MMAF-inducing genes to better characterize the genetic etiology of the MMAF phenotype and to improve the management of patients diagnosed with flagellar defects. WIDER IMPLICATIONS OF THE FINDINGS: MMAF patients with DNAH1 mutations have low aneuploidy rates and good nuclear sperm quality, explaining the high pregnancy rate obtained with these patients. Good ICSI results were obtained for both MMAF groups (DNAH1 mutated and nonmutated), suggesting that patients presenting with asthenozoospermia due to flagellar defects have a good ICSI prognosis irrespective of their genotype. The majority of MMAF cases currently remain idiopathic with no genetic cause yet identified. In depth genetic analysis of these patients using next generation sequencing should reveal new causal genes. Subsequent genotype phenotype analyses could improve advice and care provided to MMAF patients. STUDY FUNDING/COMPETING INTERESTS: None of the authors have any competing interest. This work is part of the project 'Identification and Characterization of Genes Involved in Infertility (ICG2I)', funded by the program GENOPAT 2009 from the French Research Agency (ANR) and the MAS-Flagella project, financed by the French ANR and the Direction Générale de l'Offre de Soins (DGOS).


Assuntos
Axonema/genética , Dineínas/genética , Infertilidade Masculina/genética , Mutação , Injeções de Esperma Intracitoplásmicas , Espermatozoides/anormalidades , Adulto , Axonema/ultraestrutura , Fragmentação do DNA , Feminino , Flagelos/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Infertilidade Masculina/terapia , Masculino , Recuperação de Oócitos , Indução da Ovulação , Gravidez , Taxa de Gravidez , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa