Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37127263

RESUMO

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese
2.
Cell ; 185(24): 4574-4586.e16, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36423580

RESUMO

CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Animais , Humanos , Microscopia Crioeletrônica , Edição de Genes , Genoma , Bacteriófagos/genética , DNA , RNA , Mamíferos/genética
3.
Cell ; 176(1-2): 254-267.e16, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633905

RESUMO

The ability to engineer natural proteins is pivotal to a future, pragmatic biology. CRISPR proteins have revolutionized genome modification, yet the CRISPR-Cas9 scaffold is not ideal for fusions or activation by cellular triggers. Here, we show that a topological rearrangement of Cas9 using circular permutation provides an advanced platform for RNA-guided genome modification and protection. Through systematic interrogation, we find that protein termini can be positioned adjacent to bound DNA, offering a straightforward mechanism for strategically fusing functional domains. Additionally, circular permutation enabled protease-sensing Cas9s (ProCas9s), a unique class of single-molecule effectors possessing programmable inputs and outputs. ProCas9s can sense a wide range of proteases, and we demonstrate that ProCas9 can orchestrate a cellular response to pathogen-associated protease activity. Together, these results provide a toolkit of safer and more efficient genome-modifying enzymes and molecular recorders for the advancement of precision genome engineering in research, agriculture, and biomedicine.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Edição de Genes/métodos , Proteínas Associadas a CRISPR/química , DNA/química , Genoma , Modelos Moleculares , RNA/química , RNA Guia de Cinetoplastídeos/genética
4.
Proc Natl Acad Sci U S A ; 120(43): e2308600120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37862384

RESUMO

Carboxysomes are proteinaceous organelles that encapsulate key enzymes of CO2 fixation-Rubisco and carbonic anhydrase-and are the centerpiece of the bacterial CO2 concentrating mechanism (CCM). In the CCM, actively accumulated cytosolic bicarbonate diffuses into the carboxysome and is converted to CO2 by carbonic anhydrase, producing a high CO2 concentration near Rubisco and ensuring efficient carboxylation. Self-assembly of the α-carboxysome is orchestrated by the intrinsically disordered scaffolding protein, CsoS2, which interacts with both Rubisco and carboxysomal shell proteins, but it is unknown how the carbonic anhydrase, CsoSCA, is incorporated into the α-carboxysome. Here, we present the structural basis of carbonic anhydrase encapsulation into α-carboxysomes from Halothiobacillus neapolitanus. We find that CsoSCA interacts directly with Rubisco via an intrinsically disordered N-terminal domain. A 1.98 Å single-particle cryoelectron microscopy structure of Rubisco in complex with this peptide reveals that CsoSCA binding is predominantly mediated by a network of hydrogen bonds. CsoSCA's binding site overlaps with that of CsoS2, but the two proteins utilize substantially different motifs and modes of binding, revealing a plasticity of the Rubisco binding site. Our results advance the understanding of carboxysome biogenesis and highlight the importance of Rubisco, not only as an enzyme but also as a central hub for mediating assembly through protein interactions.


Assuntos
Anidrases Carbônicas , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Anidrases Carbônicas/metabolismo , Dióxido de Carbono/metabolismo , Microscopia Crioeletrônica , Organelas/metabolismo , Proteínas de Bactérias/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(20): e2300466120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155899

RESUMO

The history of Earth's carbon cycle reflects trends in atmospheric composition convolved with the evolution of photosynthesis. Fortunately, key parts of the carbon cycle have been recorded in the carbon isotope ratios of sedimentary rocks. The dominant model used to interpret this record as a proxy for ancient atmospheric CO2 is based on carbon isotope fractionations of modern photoautotrophs, and longstanding questions remain about how their evolution might have impacted the record. Therefore, we measured both biomass (εp) and enzymatic (εRubisco) carbon isotope fractionations of a cyanobacterial strain (Synechococcus elongatus PCC 7942) solely expressing a putative ancestral Form 1B rubisco dating to ≫1 Ga. This strain, nicknamed ANC, grows in ambient pCO2 and displays larger εp values than WT, despite having a much smaller εRubisco (17.23 ± 0.61‰ vs. 25.18 ± 0.31‰, respectively). Surprisingly, ANC εp exceeded ANC εRubisco in all conditions tested, contradicting prevailing models of cyanobacterial carbon isotope fractionation. Such models can be rectified by introducing additional isotopic fractionation associated with powered inorganic carbon uptake mechanisms present in Cyanobacteria, but this amendment hinders the ability to accurately estimate historical pCO2 from geological data. Understanding the evolution of rubisco and the CO2 concentrating mechanism is therefore critical for interpreting the carbon isotope record, and fluctuations in the record may reflect the evolving efficiency of carbon fixing metabolisms in addition to changes in atmospheric CO2.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Isótopos de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Fotossíntese
6.
Nature ; 566(7744): 411-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742075

RESUMO

Cyclic electron flow around photosystem I (PSI) is a mechanism by which photosynthetic organisms balance the levels of ATP and NADPH necessary for efficient photosynthesis1,2. NAD(P)H dehydrogenase-like complex (NDH) is a key component of this pathway in most oxygenic photosynthetic organisms3,4 and is the last large photosynthetic membrane-protein complex for which the structure remains unknown. Related to the respiratory NADH dehydrogenase complex (complex I), NDH transfers electrons originating from PSI to the plastoquinone pool while pumping protons across the thylakoid membrane, thereby increasing the amount of ATP produced per NADP+ molecule reduced4,5. NDH possesses 11 of the 14 core complex I subunits, as well as several oxygenic-photosynthesis-specific (OPS) subunits that are conserved from cyanobacteria to plants3,6. However, the three core complex I subunits that are involved in accepting electrons from NAD(P)H are notably absent in NDH3,5,6, and it is therefore not clear how NDH acquires and transfers electrons to plastoquinone. It is proposed that the OPS subunits-specifically NdhS-enable NDH to accept electrons from its electron donor, ferredoxin3-5,7. Here we report a 3.1 Å structure of the 0.42-MDa NDH complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, obtained by single-particle cryo-electron microscopy. Our maps reveal the structure and arrangement of the principal OPS subunits in the NDH complex, as well as an unexpected cofactor close to the plastoquinone-binding site in the peripheral arm. The location of the OPS subunits supports a role in electron transfer and defines two potential ferredoxin-binding sites at the apex of the peripheral arm. These results suggest that NDH could possess several electron transfer routes, which would serve to maximize plastoquinone reduction and avoid deleterious off-target chemistry of the semi-plastoquinone radical.


Assuntos
Microscopia Crioeletrônica , Cianobactérias/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , NADPH Desidrogenase/química , NADPH Desidrogenase/ultraestrutura , Oxigênio/metabolismo , Fotossíntese , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cianobactérias/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Ferredoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , NADPH Desidrogenase/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Plastoquinona/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(49): e2210539119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454757

RESUMO

Cyanobacteria rely on CO2-concentrating mechanisms (CCMs) to grow in today's atmosphere (0.04% CO2). These complex physiological adaptations require ≈15 genes to produce two types of protein complexes: inorganic carbon (Ci) transporters and 100+ nm carboxysome compartments that encapsulate rubisco with a carbonic anhydrase (CA) enzyme. Mutations disrupting any of these genes prohibit growth in ambient air. If any plausible ancestral form-i.e., lacking a single gene-cannot grow, how did the CCM evolve? Here, we test the hypothesis that evolution of the bacterial CCM was "catalyzed" by historically high CO2 levels that decreased over geologic time. Using an E. coli reconstitution of a bacterial CCM, we constructed strains lacking one or more CCM components and evaluated their growth across CO2 concentrations. We expected these experiments to demonstrate the importance of the carboxysome. Instead, we found that partial CCMs expressing CA or Ci uptake genes grew better than controls in intermediate CO2 levels (≈1%) and observed similar phenotypes in two autotrophic bacteria, Halothiobacillus neapolitanus and Cupriavidus necator. To understand how CA and Ci uptake improve growth, we model autotrophy as colimited by CO2 and HCO3-, as both are required to produce biomass. Our experiments and model delineated a viable trajectory for CCM evolution where decreasing atmospheric CO2 induces an HCO3- deficiency that is alleviated by acquisition of CA or Ci uptake, thereby enabling the emergence of a modern CCM. This work underscores the importance of considering physiology and environmental context when studying the evolution of biological complexity.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Escherichia coli/genética , Bactérias , Transporte Biológico , Anidrases Carbônicas/genética
8.
Biochemistry ; 63(2): 219-229, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38085650

RESUMO

Carboxysomes are protein microcompartments that function in the bacterial CO2 concentrating mechanism (CCM) to facilitate CO2 assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled. Here, we show that the size of α-carboxysomes is controlled by the disordered scaffolding protein CsoS2. CsoS2 contains two classes of related peptide repeats that bind to the shell in a distinct fashion, and our data indicate that size is controlled by the relative number of these interactions. We propose an energetic and structural model wherein the two repeat classes bind at the junction of shell hexamers but differ in their preferences for the shell contact angles, and thus the local curvature. In total, this model suggests that a set of specific and repeated interactions between CsoS2 and shell proteins collectively achieve the large size and monodispersity of α-carboxysomes.


Assuntos
Proteínas de Bactérias , Anidrases Carbônicas , Proteínas de Bactérias/química , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Peptídeos/metabolismo , Anidrases Carbônicas/metabolismo , Organelas/metabolismo
9.
Mol Ther ; 31(8): 2422-2438, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37403358

RESUMO

Transient delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) into the central nervous system (CNS) for therapeutic genome editing could avoid limitations of viral vector-based delivery including cargo capacity, immunogenicity, and cost. Here, we tested the ability of cell-penetrant Cas9 RNPs to edit the mouse striatum when introduced using a convection-enhanced delivery system. These transient Cas9 RNPs showed comparable editing of neurons and reduced adaptive immune responses relative to one formulation of Cas9 delivered using AAV serotype 9. The production of ultra-low endotoxin Cas9 protein manufactured at scale further improved innate immunity. We conclude that injection-based delivery of minimally immunogenic CRISPR genome editing RNPs into the CNS provides a valuable alternative to virus-mediated genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Ribonucleoproteínas/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Encéfalo/metabolismo
10.
Nat Chem Biol ; 17(9): 982-988, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34354262

RESUMO

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.


Assuntos
COVID-19/genética , Sistemas CRISPR-Cas/genética , RNA Viral/genética , SARS-CoV-2/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Biotechnol Bioeng ; 117(3): 603-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709513

RESUMO

Antimicrobial peptides (AMPs) are regarded as attractive alternatives to conventional antibiotics, but their production in microbes remains challenging due to their inherent bactericidal nature. To address these limitations, we have developed a novel AMP fusion protein system based on an encapsulin nanocompartment protein and have demonstrated its utility in enhancing expression of HBCM2, an AMP with activity against Gram-negative bacteria. Here, HBCM2 was fused to the N-terminus of several Encapsulin monomer (Enc) variants engineered with multiple TEV protease recognition site insertions to facilitate proteolytic release of the fused HBCM2. Fusion of HBCM2 to the Enc variants, but not other common carrier proteins, enabled robust overexpression in Escherichia coli C43(DE3) cells. Interestingly, variants with a TEV site insertion following residue K71 in Enc exhibited the highest overexpression and HBCM2 release efficiencies compared to other variants but were deficient in cage formation. HBCM2 was purified from the highest expressing variant following TEV protease digestion and was found to be highly active in inhibiting E. coli growth (MIC = 5 µg/ml). Our study demonstrates the potential use of the Enc system to enhance expression of AMPs for biomanufacturing and therapeutic applications.


Assuntos
Proteínas de Transporte , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes de Fusão , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endopeptidases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
12.
Crit Rev Biochem Mol Biol ; 52(5): 583-594, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28635326

RESUMO

Compartmentalization is both a fundamental principle of cellular organization and an emerging theme in prokaryotic biology. Work in the past few decades has shown that protein-based organelles called microcompartments enhance the function of encapsulated cargo proteins. More recently, the repertoire of known prokaryotic organelles has expanded beyond microcompartments to include a new class of smaller proteinaceous compartments, termed nanocompartments (also known as encapsulins). Nanocompartments are icosahedral capsids that are smaller and less complex than microcompartments. Encapsulins are formed by a single species of shell protein that self-assembles and typically encapsulates only one type of cargo protein. Significant progress has been made in understanding the structure of nanocompartment shells and the loading of cargo to the interior. Recent analysis has also demonstrated the prevalence of encapsulin genes throughout prokaryotic genomes and documented a large diversity of cargo proteins with a variety of novel functions, suggesting that nanocompartments play an important role in many microbes. Here we review the current understanding of encapsulin structure and function and highlight exciting open questions of physiological significance.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Compartimento Celular , Organelas , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/fisiologia , Conformação Proteica
13.
Anal Chem ; 91(11): 7458-7465, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31082222

RESUMO

Applications of charge detection mass spectrometry (CDMS) for measuring the masses of large molecules, macromolecular complexes, and synthetic polymers that are too large or heterogeneous for conventional mass spectrometry measurements are made possible by weighing individual ions in order to avoid interferences between ions. Here, a new multiplexing method that makes it possible to measure the masses of many ions simultaneously in CDMS is demonstrated. Ions with a broad range of kinetic energies are trapped. The energy of each ion is obtained from the ratio of the intensity of the fundamental to the second harmonic frequencies of the periodic trapping motion making it possible to measure both the m/ z and charge of each ion. Because ions with the exact same m/ z but with different energies appear at different frequencies, the probability of ion-ion interference is significantly reduced. We show that the measured mass of a protein complex consisting of 16 protomers, RuBisCO (517 kDa), is not affected by the number of trapped ions with up to 21 ions trapped simultaneously in these experiments. Ion-ion interactions do not affect the ion trapping lifetime up to 1 s, and there is no influence of the number of ions on the measured charge-state distribution of bovine serum albumin (66.5 kDa), indicating that ion-ion interactions do not adversely affect any of these measurements. Over an order of magnitude gain in measurement speed over single ion analysis is demonstrated, and significant additional gains are expected with this multi-ion measurement method.

14.
Proc Natl Acad Sci U S A ; 113(33): E4867-76, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27486247

RESUMO

The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.


Assuntos
Adaptação Fisiológica , Synechococcus/fisiologia , Aclimatação , Replicação do DNA , Escuridão , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/análise , Guanosina Tetrafosfato/fisiologia , Fotossíntese
15.
Proc Natl Acad Sci U S A ; 113(36): E5354-62, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551079

RESUMO

Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxysomes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH ≈8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3 (-) into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools.


Assuntos
Dióxido de Carbono/metabolismo , Cianobactérias/metabolismo , Metabolismo Energético , Fotossíntese/genética , Transporte Biológico/genética , Carbono/metabolismo , Ciclo do Carbono/genética , Ciclo do Carbono/fisiologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
16.
Biochemistry ; 57(1): 38-46, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28992412

RESUMO

A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.


Assuntos
Bioquímica/métodos , Modelos Moleculares , Biologia Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de DNA , Animais , Bioquímica/tendências , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Biologia Computacional/tendências , Humanos , Aprendizado de Máquina/tendências , Biologia Molecular/tendências , Mutagênese , Mutação , Conformação Proteica , Engenharia de Proteínas/tendências , Proteínas/genética , Projetos de Pesquisa/tendências , Análise de Sequência de DNA/tendências
18.
Biochemistry ; 55(24): 3461-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27224728

RESUMO

The encapsulation of enzymes and other proteins within a proteinaceous shell has been observed in many bacteria and archaea, but the function and utility of many such compartments are enigmatic. Efforts to study these functions have been complicated by the size and complexity of traditional protein compartments. One potential system for investigating the effect of compartmentalization is encapsulin, a large and newly discovered class of protein shells that are typically composed of two proteins: a protomer that assembles into the icosahedral shell and a cargo protein packaged inside. Encapsulins are some of the simplest known protein shell systems and readily self-assemble in vivo. Systematic characterization of the effects of compartmentalization requires the ability to load a wide range of cargo proteins. Here, we demonstrate that foreign cargo can be loaded into the encapsulin from Thermotoga maritima both in vivo and in vitro by fusion of the cargo protein with a short C-terminal peptide present in the native cargo. To facilitate biochemical characterization, we also develop a simple and rapid purification protocol and demonstrate the thermal and pH stability of the shell. Efforts to study the biophysical effects of protein encapsulation have been problematic in complex compartments, but the simplicity of assembling and loading encapsulin makes it an ideal system for future experiments exploring the effects of encapsulation on proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos de Peptídeos/metabolismo , Peroxidases/metabolismo , Proteínas Recombinantes/metabolismo , Thermotoga maritima/metabolismo , Dicroísmo Circular , Técnicas In Vitro , Modelos Moleculares
19.
Photosynth Res ; 126(1): 33-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25366827

RESUMO

Cyanobacteria are a diverse bacterial phylum whose members possess a high degree of ultrastructural organization and unique gene regulatory mechanisms. Unraveling this complexity will require the use of live-cell fluorescence microscopy, but is impeded by the inherent fluorescent background associated with light-harvesting pigments and the need to feed photosynthetic cells light. Here, we outline a roadmap for overcoming these challenges. Specifically, we show that although basic cyanobacterial biology creates challenging experimental constraints, these restrictions can be mitigated by the careful choice of fluorophores and microscope instrumentation. Many of these choices are motivated by recent successful live-cell studies. We therefore also highlight how live-cell imaging has advanced our understanding of bacterial microcompartments, circadian rhythm, and the organization and segregation of the bacterial nucleoid.


Assuntos
Cianobactérias/fisiologia , Microscopia/métodos , Técnicas Bacteriológicas , Ritmo Circadiano , Cianobactérias/citologia , Desenho de Equipamento , Corantes Fluorescentes/análise , Processamento de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Microscopia de Fluorescência , Fotossíntese , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Poliploidia
20.
Proc Natl Acad Sci U S A ; 109(2): 478-83, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22184212

RESUMO

Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.


Assuntos
Proteínas de Bactérias/metabolismo , Compartimento Celular/fisiologia , Halothiobacillus/química , Complexos Multiproteicos/metabolismo , Regulon/genética , Dióxido de Carbono/metabolismo , Centrifugação , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Proteínas de Fluorescência Verde , Halothiobacillus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa