RESUMO
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of cellular and molecular neuroscience. Immunohistochemistry is a common tool for labeling and visualization of synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low throughput image analysis methods that are challenging to learn, and results are variable between experimenters. We developed a new open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating several stages of the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems. Motivation: Light microscopy imaging of pre- and post-synaptic proteins from neurons in tissue or in vitro allows for the effective identification of synaptic structures. Previous methods for quantitative analysis of these images were time-consuming, required extensive user training, and the source code could not be easily modified. Here, we describe SynBot, a new open-source tool that automates the synapse quantification process, decreases the requirement for user training, and allows for easy modifications to the code.
RESUMO
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low-throughput analysis methods that are challenging to learn, and the results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.
Assuntos
Processamento de Imagem Assistida por Computador , Software , Sinapses , Sinapses/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Algoritmos , Camundongos , Humanos , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologiaRESUMO
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Assuntos
Astrócitos , Neurocam , Sinapses , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Células Cultivadas , Camundongos Knockout , Neurocam/metabolismo , Somatostatina/metabolismo , Sinapses/metabolismo , Sinapses/fisiologiaRESUMO
In the mammalian central nervous system (CNS), astrocytes are indispensable for brain development, function, and health. However, non-invasive tools to study astrocyte biology and function in vivo have been limited to genetically modified mice. CRISPR/Cas9-based genome engineering enables rapid and precise gene manipulations in the CNS. Here, we developed a non-invasive astrocyte-specific method utilizing a single AAV vector, GEARBOCS (Gene Editing in AstRocytes Based On CRISPR/Cas9 System). We verified GEARBOCS' specificity to mouse cortical astrocytes and demonstrated its utility for three types of gene manipulations: knockout (KO); tagging (TagIN); and reporter gene knock-in (Gene-TRAP) strategies. We deployed GEARBOCS to determine whether cortical astrocytes express Vamp2 protein. The presence of Vamp2-positive vesicles in cultured astrocytes is well-established, however, Vamp2 protein expression in astrocytes in vivo has proven difficult to ascertain due to its overwhelming abundance in neurons. Using GEARBOCS, we delineated the in vivo astrocytic Vamp2 expression and found that it is required for maintaining excitatory and inhibitory synapse numbers in the visual cortex. GEARBOCS strategy provides fast and efficient means to study astrocyte biology in vivo.
RESUMO
Neurons require physiological IFN-γ signaling to maintain central nervous system (CNS) homeostasis, however, pathological IFN-γ signaling can cause CNS pathologies. The downstream signaling mechanisms that cause these drastically different outcomes in neurons has not been well studied. We hypothesized that different levels of IFN-γ signaling in neurons results in differential activation of its downstream transcription factor, signal transducer and activator of transduction 1 (STAT1), causing varying outcomes. Using primary cortical neurons, we showed that physiological IFN-γ elicited brief and transient STAT1 activation, whereas pathological IFN-γ induced prolonged STAT1 activation, which primed the pathway to be more responsive to a subsequent IFN-γ challenge. This is an IFN-γ specific response, as other IFNs and cytokines did not elicit such STAT1 activation nor priming in neurons. Additionally, we did not see the same effect in microglia or astrocytes, suggesting this non-canonical IFN-γ/STAT1 signaling is unique to neurons. Prolonged STAT1 activation was facilitated by continuous janus kinase (JAK) activity, even in the absence of IFN-γ. Finally, although IFN-γ initially induced a canonical IFN-γ transcriptional response in neurons, pathological levels of IFN-γ caused long-term changes in synaptic pathway transcripts. Overall, these findings suggest that IFN-γ signaling occurs via non-canonical mechanisms in neurons, and differential STAT1 activation may explain how neurons have both homeostatic and pathological responses to IFN-γ signaling.
Assuntos
Interferon gama , Fator de Transcrição STAT1 , Transdução de Sinais , Interferon gama/farmacologia , Interferon gama/metabolismo , Janus Quinases/metabolismo , Neurônios/metabolismo , Fosforilação , Animais , CamundongosRESUMO
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Assuntos
Astrócitos , Caderinas , delta Catenina , Morfogênese , Animais , Camundongos , Caderinas/genética , delta Catenina/genética , NeurôniosRESUMO
Astrocytes extensively infiltrate the neuropil to regulate critical aspects of synaptic development and function. This process is regulated by transcellular interactions between astrocytes and neurons via cell adhesion molecules. How astrocytes coordinate developmental processes among one another to parse out the synaptic neuropil and form non-overlapping territories is unknown. Here we identify a molecular mechanism regulating astrocyte-astrocyte interactions during development to coordinate astrocyte morphogenesis and gap junction coupling. We show that hepaCAM, a disease-linked, astrocyte-enriched cell adhesion molecule, regulates astrocyte competition for territory and morphological complexity in the developing mouse cortex. Furthermore, conditional deletion of Hepacam from developing astrocytes significantly impairs gap junction coupling between astrocytes and disrupts the balance between synaptic excitation and inhibition. Mutations in HEPACAM cause megalencephalic leukoencephalopathy with subcortical cysts in humans. Therefore, our findings suggest that disruption of astrocyte self-organization mechanisms could be an underlying cause of neural pathology.