Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Can J Physiol Pharmacol ; 102(3): 206-217, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909404

RESUMO

Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5ß3γ2 over other αxß3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.


Assuntos
Flumazenil , Midazolam , Animais , Ratos , Midazolam/farmacologia , Flumazenil/farmacologia , Benzodiazepinas/farmacologia , Aorta , Receptores de GABA-A , Ácido gama-Aminobutírico
2.
J Pharmacol Exp Ther ; 385(1): 50-61, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746611

RESUMO

To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPP-III-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPP-III-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to α1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT: A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the α1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81.


Assuntos
Anticonvulsivantes , Epilepsia , Ratos , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Simulação de Acoplamento Molecular , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Oxazóis/farmacologia , Epilepsia/tratamento farmacológico , Receptores de GABA-A/metabolismo , Pentilenotetrazol , Eletrochoque
3.
Drug Dev Res ; 84(3): 527-531, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748904

RESUMO

A series of imidazodiazepines has been developed that possess reduced sedative liabilities but retain efficacy in anticonvulsant screening models. The latest of these compounds, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole known as KRM-II-81) is currently awaiting advancement into the clinic. A deuterated structural analog (D5-KRM-II-81) was made as a potential backup compound and studied here in comparison to KRM-II-81. In the present study, both compounds significantly prevented seizures in mice induced by 6 Hz (44 mA) electrical stimulation without significantly altering motoric function on a rotarod after intraperitoneal administration. Both compounds also significantly prevented clonic seizures, tonic seizures, and lethality induced by pentylenetetrazol in mice when given orally. D5-KRM-II-81 had a slightly longer duration of action against clonic and tonic seizures than KRM-II-81. Oral administration of 100 mg/kg of either KRM-II-81 or D5-KRM-II-81 was significantly less disruptive of sensorimotor function in mice than diazepam (5 mg/kg, p.o.). The present report documents that D5-KRM-II-81 represents another in this series of imidazodiazepines with anticonvulsant activity at doses that do not impair sensorimotor function.


Assuntos
Anticonvulsivantes , Diazepam , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Diazepam/farmacologia , Diazepam/uso terapêutico , Oxazóis , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
4.
Int J Clin Pract ; 2022: 6741280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685562

RESUMO

Objectives: Adherence to medication is an important factor that can influence Parkinson's disease (PD) control. We aimed to explore patients' adherence to antiparkinsonian medication and determine factors that might affect adherence to medications among PD patients. Methods: A cross-sectional, exploratory survey of PD patients treated with at least one antiparkinsonian drug and with a total score of MoCA (Montreal Cognitive Assessment) ≥26 was conducted. The final sample included 112 PD patients. A patient's adherence was assessed through ARMS (Adherence to Refills and Medications Scale). ARMS scores higher than 12 were assumed lower adherence. In addition, each patient underwent neurological examination, assessment of depression, anxiety, and evaluation of the presence of PD nonmotor symptoms. Results: The mean ARDS value in our cohort was 14.9 ± 2.5. Most PD patients (74.1%) reported lower adherence to their medication. Participants in the lower adherence group were younger at PD onset, had significantly higher UPDRS (Unified PD Rating Scale) scores, as well as UPDRS III and UPDRS IV subscores, HARS (Hamilton Anxiety Rating Scale), and NMSQuest (Non-Motor Symptoms Questionnaire for PD) scores compared to the fully adherent group (p=0.013, p=0.017, p=0.041, p=0.043, and p=0.023, respectively). Among nonmotor PD symptoms, the presence of cardiovascular, apathy/attention-deficit/memory disorders, hallucinations/delusions, and problems regarding changes in weight, diplopia, or sweating were associated with lower adherence. Multivariate regression analysis revealed depression as the strongest independent predictor of lower adherence. Conclusion: Depressed PD patients compared to PD patients without clinical depression had a three times higher risk for lower adherence to pharmacotherapy. Recognition and adequate treatment of depression might result in improved adherence.


Assuntos
Doença de Parkinson , Antiparkinsonianos/uso terapêutico , Estudos Transversais , Humanos , Adesão à Medicação , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Escalas de Graduação Psiquiátrica
5.
Biopharm Drug Dispos ; 43(2): 66-75, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35194800

RESUMO

The imidazodiazepine, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo [f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a new α2/3-selective GABAkine (gamma aminobutyric acid A receptor potentiator) with anticonvulsant, anxiolytic, and antinociceptive activity in preclinical models. Reducing metabolism was utilized as a means of potentially extending the half-life of KRM-II-81. In vitro and in vivo studies were conducted to evaluate metabolic liabilities. Incubation of KRM-II-81 in hepatocytes revealed sites of potential metabolism on the oxazole and the diazepine rings. These sites were targeted in the design of a deuterated analog (D5-KRM-II-81) that could be evaluated as a potentially longer-acting analog. In contrast to computer predictions, peak plasma concentrations of D5-KRM-II-81 in rats were not significantly greater than those produced by KRM-II-81 after oral administration. Furthermore, brain disposition of KRM-II-81 was higher than that of D5-KRM-II-81. The half-life of the two compounds in either plasma or brain did not statistically differ from one another but the tmax for D5-KRM-II-81 occurred slightly earlier than for KRM-II-81. Non-metabolic considerations might be relevant to the lack of increases in exposure by D5-KRM-II-81. Alternative sites of metabolism on KRM-II-81, not targeted by the current deuteration process, are also possible. Despite its lack of augmented exposure, D5-KRM-II-81, like KRM-II-81, significantly prevented seizures induced by pentylenetetrazol when given orally. The present findings introduce a new orally active anticonvulsant GABAkine, D5-KRM-II-81.


Assuntos
Antibióticos Antituberculose , Anticonvulsivantes , Animais , Anticonvulsivantes/farmacologia , Oxazóis/metabolismo , Ratos , Receptores de GABA-A/metabolismo
6.
Pharmacol Rev ; 70(4): 836-878, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275042

RESUMO

GABAA receptors are the major inhibitory transmitter receptors in the brain. They are ligand-gated chloride channels and the site of action of benzodiazepines, barbiturates, neuroactive steroids, anesthetics, and convulsants. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 homologous subunits and their distinct regional, cellular, and subcellular distribution gives rise to a large number of GABAA receptor subtypes with distinct pharmacology, which modulate different functions of the brain. A variety of compounds have been identified that were claimed to modulate selectively individual GABAA receptor subtypes. However, many of these compounds have only incompletely been investigated or, in addition to a preferential modulation of a receptor subtype, also modulate other subtypes at similar concentrations. Although their differential efficacy at distinct receptor subtypes reduced side effects in behavioral experiments in rodents, the exact receptor subtypes mediating their behavioral effects cannot be unequivocally delineated. In addition, the discrepant in vivo effects of some of these compounds in rodents and man raised doubts on the applicability of the concept of receptor subtype selectivity as a guide for the development of clinically useful drugs. Here, we provide an up-to-date review on the currently available GABAA receptor subtype-selective ligands. We present data on their actual activity at GABAA receptor subtypes, discuss the translational aspect of subtype-selective drugs, and make proposals for the future development of ligands with better anxioselectivity in humans. Finally, we discuss possible ways to strengthen the conclusions of behavioral studies with the currently available drugs.


Assuntos
Receptores de GABA-A/metabolismo , Animais , Humanos , Ligantes
7.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360758

RESUMO

The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of -40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078-0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.


Assuntos
Antioxidantes , Curcumina , Portadores de Fármacos , Nanoestruturas , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Emulsões , Humanos , Masculino , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Projetos Piloto , Ratos , Ratos Sprague-Dawley
8.
Arch Toxicol ; 94(8): 2829-2845, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32504122

RESUMO

Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Afeto/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Mineração de Dados , Transtornos do Humor/induzido quimicamente , Farmacovigilância , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transtornos do Humor/genética , Transtornos do Humor/metabolismo , Transtornos do Humor/psicologia , Mapas de Interação de Proteínas , Medição de Risco , Transdução de Sinais
9.
Korean J Physiol Pharmacol ; 21(4): 385-395, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28706452

RESUMO

Vasoconstrictive properties of sympathomimetic drugs are the basis of their widespread use as decongestants and possible source of adverse responses. Insufficiently substantiated practice of combining decongestants in some marketed preparations, such are those containing phenylephrine and lerimazoline, may affect the overall contractile activity, and thus their therapeutic utility. This study aimed to examine the interaction between lerimazoline and phenylephrine in isolated rat aortic rings, and also to assess the substrate of the obtained lerimazoline-induced attenuation of phenylephrine contraction. Namely, while lower concentrations of lerimazoline (10-6 M and especially 10-7 M) expectedly tended to potentiate the phenylephrine-induced contractions, lerimazoline in higher concentrations (10-4 M and above) unexpectedly and profoundly depleted the phenylephrine concentration-response curve. Suppression of NO with NO synthase (NOS) inhibitor Nw-nitro-L-arginine methyl ester (L-NAME; 10-4 M) or NO scavanger OHB12 (10-3 M), as well as non-specific inhibition of K+-channels with tetraethylammonium (TEA; 10-3 M), have reversed lerimazoline-induced relaxation of phenylephrine contractions, while cyclooxygenase inhibitor indomethacin (10-5 M) did not affect the interaction between two vasoconstrictors. At the receptor level, non-selective 5-HT receptor antagonist methiothepin reversed the attenuating effect of lerimazoline on phenylephrine contraction when applied at 3×10-7 and 10-6 M, but not at the highest concentration (10-4 M). Neither the 5-HT1D-receptor selective antagonist BRL 15572 (10-6 M) nor 5-HT7 receptor selective antagonist SB 269970 (10-6 M) affected the lerimazoline-induced attenuation of phenylephrine activity. The mechanism of lerimazoline-induced suppression of phenylephrine contractions may involve potentiation of activity of NO and K+-channels and activation of some methiothepin-sensitive receptors, possibly of the 5-HT2B subtype.

10.
J Affect Disord ; 349: 286-296, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199412

RESUMO

BACKGROUND: Early life stress is a major risk factor for later development of psychiatric disorders, including post-traumatic stress disorder (PTSD). An intricate relationship exists between various neurotransmitters (such as glutamate, norepinephrine or serotonin), calcium/calmodulin-dependent protein kinase II (CaMKII), as an important regulator of glutamatergic synaptic function, and PTSD. Here, we developed a double-hit model to investigate the interaction of maternal deprivation (MD) as an early life stress model and single prolonged stress (SPS) as a PTSD model at the behavioral and molecular levels. METHODS: Male Wistar rats exposed to these stress paradigms were subjected to a comprehensive behavioral analysis. In hippocampal synaptosomes we investigated neurotransmitter release and glutamate concentration. The expression of CaMKII and the content of monoamines were determined in selected brain regions. Brain-derived neurotrophic factor (BDNF) mRNA was quantified by radioactive in situ hybridization. RESULTS: We report a distinct behavioral phenotype in the double-hit group. Double-hit and SPS groups had decreased hippocampal presynaptic glutamatergic function. In hippocampus, double-hit stress caused a decrease in autophosphorylation of CaMKII. In prefrontal cortex, both SPS and double-hit stress had a similar effect on CaMKII autophosphorylation. Double-hit stress, rather than SPS, affected the norepinephrine and serotonin levels in prefrontal cortex, and suppressed BDNF gene expression in prefrontal cortex and hippocampus. LIMITATIONS: The study was conducted in male rats only. The affected brain regions cannot be restricted to hippocampus, prefrontal cortex and amygdala. CONCLUSION: Double-hit stress caused more pronounced and distinct behavioral, molecular and functional changes, compared to MD or SPS alone.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Serotonina , Transtornos de Estresse Pós-Traumáticos , Animais , Humanos , Masculino , Ratos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Privação Materna , Norepinefrina , Ratos Wistar , Serotonina/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética
11.
ACS Chem Neurosci ; 15(3): 517-526, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38175916

RESUMO

KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 µM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1ß3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.


Assuntos
Epilepsia do Lobo Temporal , Camundongos , Humanos , Ratos , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Receptores de GABA-A/metabolismo , Simulação de Acoplamento Molecular , Convulsões/tratamento farmacológico , Oxazóis/farmacologia , Encéfalo/metabolismo , Hipnóticos e Sedativos/uso terapêutico , Redes Neurais de Computação , Anticonvulsivantes/farmacologia
12.
Pharmaceutics ; 15(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36839768

RESUMO

Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.

13.
Eur J Pharm Sci ; 189: 106557, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544333

RESUMO

Recently, nanocrystal dispersions have been considered as a promising formulation strategy to improve the bioavailability of the deuterated pyrazoloquinolinone ligand DK-I-56-1 (7­methoxy-2-(4­methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one). In the current study, the freeze-drying process (formulation and process parameters) was investigated to improve the storage stability of the previously developed formulation. Different combinations of lyoprotectant (sucrose or trehalose) and bulking agent (mannitol) were varied while formulations were freeze-dried under two conditions (primary drying at -10 or -45 °C). The obtained lyophilizates were characterized in terms of particle size, solid state properties and morphology, while the interactions within the samples were analyzed by Fourier transform infrared spectroscopy. In the preliminary study, three formulations were selected based on the high redispersibility index values (around 95%). The temperature of primary drying had no significant effect on particle size, but stability during storage was impaired for samples dried at -10 °C. Samples dried at lower temperature were more homogeneous and remained stable for three months. It was found that the optimal ratio of sucrose or trehalose to mannitol was 3:2 at a total concentration of 10% to achieve the best stability (particle size < 1.0 µm, polydispersity index < 0.250). The amorphous state of lyoprotectants probably provided a high degree of interaction with nanocrystals, while the crystalline mannitol provided an elegant cake structure. Sucrose was superior to trehalose in maintaining particle size during freeze-drying, while trehalose was more effective in keeping particle size within limits during storage. In conclusion, results demonstrated that the appropriate combination of sucrose/trehalose and mannitol together with the appropriate selection of lyophilization process parameters could yield nanocrystals with satisfactory stability.

14.
Int J Pharm ; 633: 122613, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36657554

RESUMO

Preclinical development of deuterated pyrazoloquinolinone ligands, promising drug candidates for various neuropsychiatric disorders, was hindered by unusually low solubility in water and oils. DK-I-60-3 (7-methoxy-d3-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3Hpyrazolo[4,3-c]quinolin-3-one) is one of such pyrazoloquinolinones, and we recently reported about increased oral bioavailability of its nanocrystal formulation (NC). Lipid nanoparticles (LNP) with a high concentration of lecithin, which enhances loading capacity of the lipid matrix, may give rise to further improvement. After preformulation studies by differential scanning calorimetry and polarized light microscopy, LNP were prepared by the hot high pressure homogenization, and characterized in terms of particle size, morphology, and encapsulation efficacy. The layered structure visible on atomic force micrographs was confirmed by nuclear magnetic resonance. Obtained formulations were desirably stable, with small particle size (<100 nm), and high encapsulation efficacy (>99 %). Lecithin was partially fluid and most probably located in the outer shell of the particle, together with DK-I-60-3. While the hydrophobic part of polysorbate 80 was completely immobilized, its hydrophilic part was free in the aqueous phase. In oral neuropharmacokinetic study in rats, an around 1.5-fold increase of area under the curve with LNP compared to NC was noticed both in brain and plasma. In bioavailability study, F value of LNP (34.7 ± 12.4 %) was 1.4-fold higher than of NC (24.5 ± 7.8 %); however, this difference did not reach statistical significance. Therefore, employment of LNP platform in preclinical formulation of DK-I-60-3 imparted an incremental improvement of its physicochemical as well as pharmacokinetic behavior.


Assuntos
Lecitinas , Nanopartículas , Ratos , Animais , Lecitinas/química , Ligantes , Nanopartículas/química , Lipossomos , Tamanho da Partícula , Disponibilidade Biológica , Administração Oral , Solubilidade , Portadores de Fármacos/farmacocinética
15.
Behav Pharmacol ; 23(2): 191-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327019

RESUMO

Benzodiazepines negatively affect motor coordination and balance and produce myorelaxation. The aim of the present study was to examine the extent to which populations of γ-aminobutyric acid A (GABAA) receptors containing α1 and α5 subunits contribute to these motor-impairing effects in rats. We used the nonselective agonist diazepam and the α1-selective agonist zolpidem, as well as nonselective, α1-subunit and α5-subunit-selective antagonists flumazenil, ßCCt, and XLi093, respectively. Ataxia and muscle relaxation were assessed by rotarod and grip strength tests performed 20 min after intraperitoneal treatment. Diazepam (2 mg/kg) induced significant ataxia and muscle relaxation, which were completely prevented by pretreatment with flumazenil (10 mg/kg) and ßCCt (20 mg/kg). XLi093 antagonized the myorelaxant, but not the ataxic actions of diazepam. All three doses of zolpidem (1, 2, and 5 mg/kg) produced ataxia, but only the highest dose (5 mg/kg) significantly decreased the grip strength. These effects of zolpidem were reversed by ßCCt at doses of 5 and 10 mg/kg, respectively. The present study demonstrates that α1 GABAA receptors mediate ataxia and indirectly contribute to myorelaxation in rats, whereas α5 GABAA receptors contribute significantly, although not dominantly, to muscle relaxation but not ataxia.


Assuntos
Ataxia/fisiopatologia , Benzodiazepinas/farmacologia , Agonistas de Receptores de GABA-A/fisiologia , Relaxamento Muscular/fisiologia , Receptores de GABA-A/fisiologia , Animais , Ataxia/induzido quimicamente , Benzodiazepinas/antagonistas & inibidores , Benzodiazepinonas/farmacologia , Carbolinas/farmacologia , Diazepam/antagonistas & inibidores , Diazepam/farmacologia , Flumazenil/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Força da Mão/fisiologia , Imidazóis/farmacologia , Masculino , Relaxamento Muscular/efeitos dos fármacos , Piridinas/antagonistas & inibidores , Piridinas/farmacologia , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod/métodos , Zolpidem
16.
Autism Res ; 15(5): 806-820, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266641

RESUMO

Autism spectrum disorder (ASD), as a common neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still awaits an effective treatment strategy. The involvement of GABAergic neurotransmission, and especially a deficit of GABAA receptors that contain the α5 subunits, were implicated in pathogenesis of ASD. Therefore, we tested MP-III-022, a positive allosteric modulator (PAM) selective for α5GABAA receptors, in Wistar rats prenatally exposed to valproic acid, as an animal model useful for studying ASD. Postweaning rats of both sexes were treated for 7 days with vehicle or MP-III-022 at two doses pharmacokinetically determined as selective, and thereafter tested in a behavioral battery (social interaction test, elevated plus maze, spontaneous locomotor activity, and standard and reverse Morris water maze). Additional rats were used for establishing a primary neuronal culture and performing calcium imaging, and determination of hippocampal mRNA levels of GABRA5, NKCC1, and KCC2. MP-III-022 prevented impairments in many parameters connected with social, repetitive and restrictive behavioral domains. The lower and higher dose was more effective in males and females, respectively. Intriguingly, MP-III-022 elicited certain changes in control animals similar to those manifested in valproate animals themselves. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, assessed with calcium imaging, and also in expression changes of three genes analyzed. Our data support a role of α5GABAA receptors in pathophysiology of ASD, and suggest a potential application of selective PAMs in its treatment, that needs to be researched in a sex-specific manner. LAY SUMMARY: In rats prenatally exposed to valproate as a model of autism, a modulator of α5GABAA receptors ameliorated social, repetitive and restrictive impairments, and, intriguingly, elicited certain autism-like changes in control rats. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, and partly in gene expression changes. This shows a role of α5GABAA receptors in pathophysiology of ASD, and a potential application of their selective modulators in its treatment.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Receptores de GABA-A , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Comportamento Animal/fisiologia , Cálcio/metabolismo , Cálcio/farmacologia , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Comportamento Social , Ácido Valproico/farmacologia , Ácido gama-Aminobutírico
17.
Basic Clin Pharmacol Toxicol ; 131(6): 514-524, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36180380

RESUMO

Several pyrazoloquinolinone (PQ) ligands were recently discovered as functionally selective positive modulators at the PQ site of α6-containing GABAA receptors. PQs are also neutral modulators at the benzodiazepine site. We assessed the influence of PQ compounds from three structural groups (PZ-II-029 and related deuterated analogues DK-I-56-1, RV-I-029, DK-I-60-3 and DK-I-86-1; LAU 463 and related analogues DK-I-58-1 and DK-II-58-1; and DK-I-87-1), alone and in combination with diazepam, on the behaviour of male Sprague-Dawley rats. An excellent behavioural safety profile of all tested PQs was demonstrated in the spontaneous locomotor activity, rotarod, loss of righting reflex and pentylenetetrazol tests. In interaction studies, only PZ-II-029 and its analogues prevented the ataxic effects of the benzodiazepine, as assessed in the rotarod test and during monitoring of rat locomotor activity after awakening from the loss of righting reflex. Published electrophysiological profiles of PQ ligands imply that positive modulation elicited at α6-GABAA receptors that contain the γ2 and δ subunit, rather than their neutral modulatory action at the benzodiazepine site, may prevent the ataxic action of diazepam. Thus, PZ-II-029 and its deuterated analogues are not prone to untoward interactions with benzodiazepines and may indeed completely abolish their ataxic action, seen at therapeutic, and especially toxic concentrations.


Assuntos
Diazepam , Receptores de GABA-A , Animais , Ratos , Masculino , Diazepam/farmacologia , Ratos Sprague-Dawley , Receptores de GABA-A/química , Benzodiazepinas/farmacologia , Ligantes , Ácido gama-Aminobutírico , Ataxia , Moduladores GABAérgicos
18.
Behav Brain Res ; 416: 113578, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34508769

RESUMO

Positive allosteric modulators (PAMs) of α5GABAA receptors (α5GABAARs) are emerging as potential therapeutics for a range of neuropsychiatric disorders. However, their role in memory processing of healthy animals is not sufficiently examined. We tested the effects of MP-III-022 (1 mg/kg, 2.5 mg/kg and 10 mg/kg), a PAM known to be selective for α5GABAARs and devoid of prominent side-effects, in different behavioral paradigms (Morris water maze, novel object recognition test and social novelty discrimination) and on GABRA5 expression in Wistar rats, 30 min and 24 h after intraperitoneal treatment administration. The lowest dose tested worsened short-term object memory. The same dose, administered two times in a span of 24 h, improved spatial and impaired object and, at a trend level, social memory. The highest dose had a detrimental effect on all types of long-term memory (object memory at a trend level) and short-term spatial memory, but improved short-term object and social memory. Distinct sets of expression changes were detected in both prefrontal cortex and two regions of the hippocampus, but the latter ones could be assessed as more consequential. An increase of GABRA5 mRNA in CA2 occurred in parallel with improvement of object and social, but impairment of spatial memory, while the opposite happened with a trend level change in CA1. Our study demonstrates the variability of the roles of the α5GABAAR based on its level of expression and localization, in dependence on the type and protocol of cognitive tasks, as well as the respective timing of pharmacological modulation and testing.


Assuntos
Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Memória Espacial/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
19.
Neuropsychopharmacology ; 47(9): 1608-1619, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35701547

RESUMO

Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.


Assuntos
Ansiolíticos , Transtorno Depressivo Maior , Animais , Ansiolíticos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios , Receptores de GABA-A
20.
Parkinsonism Relat Disord ; 98: 7-12, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398727

RESUMO

BACKGROUND: Clinical-related risk factors to freezing of gait (FOG) in Parkinson's disease (PD) have been identified. Still, the influence of genetic variations on the FOG occurrence has been poorly studied thus far. AIM: We aimed to evaluate the association of six selected polymorphisms of DRD2, ANKK1, and COMT genes with the FOG occurrence and explore the influence of ANNK1/DRD2 haplotypes on the onset of FOG in the group of PD patients. METHOD: PD patients (n = 234), treated with levodopa for at least two years, were genotyped for the rs4680 in COMT, rs6277, rs1076560, and rs2283265 in DRD2, and rs1800497 and rs2734849 polymorphisms in ANKK1 genes. FOG was evaluated by posing a direct question. In addition, a comprehensive set of clinical scales was applied to all patients. RESULTS: FOG occurred in 132 (56.4%) PD patients in our cohort. Freezers were younger at PD onset, had longer disease duration, used higher levodopa daily doses and dopaminergic agents, and had higher motor and non-motor scales scores than non-freezers. FOG was more frequent among AA rs4680 COMT carriers than AG and GG rs4680 COMT carriers. Independent predictors of FOG were: disease duration of more than ten years, levodopa daily dose higher than 500 mg/day, motor status, and COMT AA genotype. AGGAA and GGAAA haplotypes were revealed as protective and vulnerability factors for FOG occurrence. CONCLUSION: In addition to previously identified disease- and therapy-related risk factors, our results suggested a possible contribution of dopamine-related genes to the FOG occurrence.


Assuntos
Catecol O-Metiltransferase , Transtornos Neurológicos da Marcha , Doença de Parkinson , Antiparkinsonianos/uso terapêutico , Catecol O-Metiltransferase/genética , Marcha/genética , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/genética , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Dopamina D2/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa