Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 27(6): 1364-1370, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216403

RESUMO

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.


Assuntos
Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/antagonistas & inibidores , Animais , Eletroencefalografia , Eletromiografia , Estrutura Molecular , Antagonistas dos Receptores de Orexina/química , Ratos
2.
Bioorg Med Chem Lett ; 25(12): 2488-92, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25981685

RESUMO

Antagonism of orexin receptors has shown clinical efficacy as a novel paradigm for the treatment of insomnia and related disorders. Herein, molecules related to the dual orexin receptor antagonist filorexant were transformed into compounds that were selective for the OX2R subtype. Judicious selection of the substituents on the pyridine ring and benzamide groups led to 6b; which was highly potent, OX2R selective, and exhibited excellent development properties.


Assuntos
Antagonistas dos Receptores de Orexina/química , Receptores de Orexina/química , Piperidinas/química , Triazóis/química , Animais , Cães , Meia-Vida , Camundongos , Antagonistas dos Receptores de Orexina/farmacocinética , Antagonistas dos Receptores de Orexina/uso terapêutico , Receptores de Orexina/metabolismo , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Ligação Proteica , Pirimidinas/química , Ratos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/veterinária , Relação Estrutura-Atividade , Triazóis/farmacocinética , Triazóis/uso terapêutico
3.
BMC Neurosci ; 14: 90, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23981345

RESUMO

BACKGROUND: Drugs targeting insomnia ideally promote sleep throughout the night, maintain normal sleep architecture, and are devoid of residual effects associated with morning sedation. These features of an ideal compound are not only dependent upon pharmacokinetics, receptor binding kinetics, potency and pharmacodynamic activity, but also upon a compound's mechanism of action. RESULTS: Dual orexin receptor antagonists (DORAs) block the arousal-promoting activity of orexin peptides and, as demonstrated in the current work, exhibit an efficacy signal window dependent upon oscillating levels of endogenous orexin neuropeptide. Sleep efficacy of structurally diverse DORAs in rat and dog was achieved at plasma exposures corresponding to orexin 2 receptor (OX2R) occupancies in the range of 65 to 80%. In rats, the time course of OX2R occupancy was dependent upon receptor binding kinetics and was tightly correlated with the timing of active wake reduction. In rhesus monkeys, direct comparison of DORA-22 with GABA-A modulators at similar sleep-inducing doses revealed that diazepam produced next-day residual sleep and both diazepam and eszopiclone induced next-day cognitive deficits. In stark contrast, DORA-22 did not produce residual effects. Furthermore, DORA-22 evoked only minimal changes in quantitative electroencephalogram (qEEG) activity during the normal resting phase in contrast to GABA-A modulators which induced substantial qEEG changes. CONCLUSION: The higher levels of receptor occupancy necessary for DORA efficacy require a plasma concentration profile sufficient to maintain sleep for the duration of the resting period. DORAs, with a half-life exceeding 8 h in humans, are expected to fulfill this requirement as exposures drop to sub-threshold receptor occupancy levels prior to the wake period, potentially avoiding next-day residual effects at therapeutic doses.


Assuntos
Azepinas/farmacocinética , Antagonistas dos Receptores de Orexina , Sono/efeitos dos fármacos , Triazóis/farmacocinética , Animais , Cães , Eletroencefalografia , Feminino , Humanos , Imunoensaio , Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/líquido cefalorraquidiano , Orexinas , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Sono/fisiologia
4.
J Neurogenet ; 25(4): 167-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22091728

RESUMO

Despite the substantial impact of sleep disturbances on human health and the many years of study dedicated to understanding sleep pathologies, the underlying genetic mechanisms that govern sleep and wake largely remain unknown. Recently, the authors completed large-scale genetic and gene expression analyses in a segregating inbred mouse cross and identified candidate causal genes that regulate the mammalian sleep-wake cycle, across multiple traits including total sleep time, amounts of rapid eye movement (REM), non-REM, sleep bout duration, and sleep fragmentation. Here the authors describe a novel approach toward validating candidate causal genes, while also identifying potential targets for sleep-related indications. Select small-molecule antagonists and agonists were used to interrogate candidate causal gene function in rodent sleep polysomnography assays to determine impact on overall sleep architecture and to evaluate alignment with associated sleep-wake traits. Significant effects on sleep architecture were observed in validation studies using compounds targeting the muscarinic acetylcholine receptor M3 subunit (Chrm3) (wake promotion), nicotinic acetylcholine receptor alpha4 subunit (Chrna4) (wake promotion), dopamine receptor D5 subunit (Drd5) (sleep induction), serotonin 1D receptor (Htr1d) (altered REM fragmentation), glucagon-like peptide-1 receptor (Glp1r) (light sleep promotion and reduction of deep sleep), and calcium channel, voltage-dependent, T type, alpha 1I subunit (Cacna1i) (increased bout duration of slow wave sleep). Taken together, these results show the complexity of genetic components that regulate sleep-wake traits and highlight the importance of evaluating this complex behavior at a systems level. Pharmacological validation of genetically identified putative targets provides a rapid alternative to generating knock out or transgenic animal models, and may ultimately lead towards new therapeutic opportunities.


Assuntos
Cruzamentos Genéticos , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/genética , Sono/efeitos dos fármacos , Sono/genética , Animais , Canais de Cálcio Tipo N , Canais de Cálcio Tipo P/genética , Canais de Cálcio Tipo Q/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M3/genética , Receptores de Dopamina D5/genética , Receptores Nicotínicos/genética , Transtornos do Sono-Vigília/metabolismo
5.
Sleep ; 39(3): 603-12, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26943466

RESUMO

STUDY OBJECTIVES: In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening. METHODS: DORA-22 and GABAaR modulators (eszopiclone, diazepam) were evaluated in adult male rhesus monkeys (n = 34) with continuous polysomnography recordings in crossover studies of sleep architecture, arousability to a classically conditioned salient versus neutral acoustical stimulus, and psychomotor vigilance task (PVT) performance if awakened. RESULTS: All compounds decreased wakefulness, but only DORA-22 sleep resembled unmedicated sleep in terms of underlying sleep architecture, preserved ability to awaken to salient-conditioned acoustic stimuli while maintaining sleep during neutral acoustic stimuli, and no congnitive impairment in PVT performance. Although GABAaR modulators induced lighter sleep, monkeys rarely woke to salient stimuli and PVT performance was impaired if monkeys were awakened. CONCLUSIONS: In nonhuman primates, DORAs' targeted mechanism for promoting sleep protects the ability to selectively arouse to salient stimuli and perform attentional tasks unimpaired, suggesting meaningful differentiation between a hypnotic agent that works through antagonizing orexin wake signaling versus the sedative hypnotic effects of the GABAaR modulator mechanism of action.


Assuntos
Macaca mulatta/fisiologia , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sono/efeitos dos fármacos , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia , Animais , Nível de Alerta/efeitos dos fármacos , Condicionamento Clássico , Estudos Cross-Over , Diazepam/farmacologia , Zopiclona/farmacologia , GABAérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Masculino , Piperidinas/farmacologia , Polissonografia , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Triazóis/farmacologia
6.
Front Behav Neurosci ; 8: 182, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904334

RESUMO

The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs) effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem) and antihistamine (diphenhydramine) administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram (EMG), electrooculogram (EOG), and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night) and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus) or presented randomly (neutral stimulus). Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic) loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in the dog thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

7.
Sci Transl Med ; 5(179): 179ra44, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552372

RESUMO

Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use.


Assuntos
Cognição/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Sono/efeitos dos fármacos , Administração Oral , Animais , Atenção/efeitos dos fármacos , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Diazepam/administração & dosagem , Diazepam/farmacologia , Zopiclona , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Macaca mulatta , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores de Orexina , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Reconhecimento Psicológico , Análise e Desempenho de Tarefas , Fatores de Tempo , Triazóis/administração & dosagem , Triazóis/farmacologia , Zolpidem , Ácido gama-Aminobutírico/metabolismo
8.
Bone ; 56(2): 497-505, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23791777

RESUMO

Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 µg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs.


Assuntos
Alendronato/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Análise de Elementos Finitos , Animais , Macaca mulatta , Ovariectomia , Rádio (Anatomia) , Tomografia Computadorizada por Raios X
9.
Neuropsychopharmacology ; 38(12): 2401-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23722242

RESUMO

Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.


Assuntos
Compostos Azabicíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas dos Receptores de Orexina , Piperazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Fases do Sono/efeitos dos fármacos , Triazóis/farmacologia , Animais , Compostos Azabicíclicos/administração & dosagem , Encéfalo/fisiologia , Eletroencefalografia , Zopiclona , Agonistas de Receptores de GABA-A/administração & dosagem , Masculino , Piperazinas/administração & dosagem , Piperidinas/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fases do Sono/fisiologia , Triazóis/administração & dosagem , Zolpidem
10.
Bone ; 56(2): 489-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23806798

RESUMO

Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 µg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates.


Assuntos
Alendronato/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Alendronato/farmacocinética , Animais , Compostos de Bifenilo/farmacocinética , Conservadores da Densidade Óssea/farmacocinética , Conservadores da Densidade Óssea/uso terapêutico , Remodelação Óssea/efeitos dos fármacos , Feminino , Haplorrinos , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/efeitos dos fármacos , Ovariectomia , Radiografia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa